0000000000409624

AUTHOR

A. Häußler

showing 3 related works from this author

Automated parametric neutronics analysis of the Helium Cooled Pebble Bed breeder blanket with Be 12 Ti

2017

The Helium Cooled Pebble Bed (HCPB) breeder blanket is being developed as part of the European Fusion Programme. Part of the programme is to investigate blanket designs relevant for future demonstration fusion power plants. This paper presents neutronics analyses of the HCPB with an alternative neutron multiplier, Be12Ti which is incorporated into the design, replacing the current Be multiplier. A parameter study was performed for a range of geometries to identify the optimal heights of the lithium ceramic and neutron multiplier pebble beds. Automated creation of CAD models followed by conversion to constructive solid geometry (CSG) and unstructured mesh (UM) geometry allows the models to b…

Neutron transportMaterials scienceNuclear engineeringHCPBNeutronicBlanket01 natural sciences7. Clean energy010305 fluids & plasmasBreeder blanketConstructive solid geometryMaterials Science(all)0103 physical sciencesGeneral Materials ScienceNeutronCAD010306 general physicsPebbleFusionParametricSettore ING-IND/19 - Impianti NucleariParametric statisticsCivil and Structural EngineeringMechanical EngineeringFusion powerNuclear Energy and EngineeringMultiplier (economics)CoupledVolumetric heatingFusion Engineering and Design
researchProduct

Preliminary structural assessment of the HELIAS 5-B breeding blanket

2019

Abstract The European Roadmap to the realisation of fusion energy, carried out by the EUROfusion consortium, considers the stellarator concept as a possible long-term alternative to a tokamak fusion power plant. To this purpose a pivotal issue is the design of a HELIcal-axis Advanced Stellarator (HELIAS) machine equipped with a tritium Breeding Blanket (BB), considering the achievements and the design experience acquired in the pre-conceptual design phase of the tokamak DEMO BB. Therefore, within the framework of EUROfusion Work Package S2 R&D activity, a research campaign has been launched at KIT. The scope of the research has been the determination of a preliminary BB segmentation scheme …

TechnologyWork packageTokamakPower stationbiologyHeliasComputer scienceMechanical EngineeringNuclear engineeringBlanketFusion powerbiology.organism_classification7. Clean energy01 natural sciencesFinite element method010305 fluids & plasmaslaw.inventionNuclear Energy and Engineeringlaw0103 physical sciencesGeneral Materials Science010306 general physicsddc:600StellaratorCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Structural assessment of a whole toroidal sector of the HELIAS 5-B breeding blanket

2021

Abstract The European roadmap for the realization of fusion energy considers the stellarator line as a possible long-term alternative to a tokamak DEMO. In this context, from the plasma physics standpoint, the most promising option is a five-field period power plant called HELIcal-axis Advanced Stellarator (HELIAS) 5-B. In order to allow the electricity production, the HELIAS 5-B reactor must be endowed with a breeding blanket (BB). Hence, in this paper, the advancements in the HELIAS 5-B BB design are reported. In particular, the structural assessment of a whole BB period, extending along toroidal direction for 72 °, is depicted. A geometric configuration encompassing dummy BB segments has…

TechnologyTokamakHeliasNuclear engineeringFEM analysisContext (language use)Blanket01 natural sciences010305 fluids & plasmaslaw.inventionThermomechanicsHELIASlaw0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringMathematicsStellaratorToroidbiologyMechanical EngineeringFusion powerbiology.organism_classificationFinite element methodNuclear Energy and EngineeringBreeding blanketddc:600StellaratorFusion Engineering and Design
researchProduct