0000000000409841

AUTHOR

Claudia Alessandro

Down-regulation of early sea urchin histone H2A gene relies on cis regulative sequences located in the 5' and 3' regions and including the enhancer blocker sns.

The tandem repeated sea urchin alpha-histone genes are developmentally regulated by gene-specific promoter elements. Coordinate transcription of the five genes begins after meiotic maturation of the oocyte, continues through cleavage, and reaches its maximum at morula stage, after which these genes are shut off and maintained in a silenced state for the life cycle of the animal. Although cis regulative sequences affecting the timing and the level of expression of these genes have been characterized, much less is known about the mechanism of their repression. Here we report the results of a functional analysis that allowed the identification of the sequence elements needed for the silencing …

research product

Regulation of the sea urchin early H2A histone gene expression depends on the modulator element and on sequences located near the 3' end

Abstract Transcription of the sea urchin early histone genes occurs transiently during early cleavage, reaching the maximum at the morula stage and declining to an undetectable level at the gastrula stage. To identify the regulatory elements responsible for the timing and the levels of transcription of the H2A gene, we used promoter binding studies in nuclear extracts and microinjection of a CAT transgene driven by the early H2A promoter. We found that morula and gastrula nuclear proteins produced indistinguishable DNase I footprint patterns on the H2A promoter. Two sites of interactions, centred on the modulator/enhancer and on the CCAAT box respectively, were detected. Deletion of the mod…

research product

Functional characterization of the enhancer blocking element of the sea urchin early histone gene cluster reveals insulator properties and three essential cis-acting sequences

Insulator elements can be functionally identified by their ability to shield promoters from regulators in a position-dependent manner or their ability to protect adjacent transgenes from position effects. We have previously reported the identification of a 265 bp sns DNA fragment at the 3' end of the sea urchin H2A early histone gene that blocked expression of a reporter gene in transgenic embryos when placed between the enhancer and the promoter. Here we show that sns interferes with enhancer-promoter interaction in a directional manner. When sns is placed between the H2A modulator and the inducible tet operator, the modulator is barred from interaction with the basal promoter. However, th…

research product