0000000000409875

AUTHOR

Rima Zoorob

showing 4 related works from this author

Diversifying selection on MHC class I in the house sparrow (Passer domesticus).

2009

10 pages; International audience; Genes of the major histocompatibility complex (MHC) are the most polymorphic loci known in vertebrates. Two main hypotheses have been put forward to explain the maintenance of MHC diversity: pathogen-mediated selection and MHC-based mate choice. Host-parasite interactions can maintain MHC diversity via frequency-dependent selection, heterozygote advantage, and diversifying selection (spatially and/or temporally heterogeneous selection). In this study, we wished to investigate the nature of selection acting on the MHC class I across spatially structured populations of house sparrows (Passer domesticus) in France. To infer the nature of the selection, we comp…

0106 biological sciencesMESH : Gene FlowMESH: Selection (Genetics)MESH: GeographyGenes MHC Class IMESH: Genetic MarkersBalancing selectionMESH : Microsatellite Repeats[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencesmicrosatellitesMESH: SparrowsMESH : Genetic MarkersMESH: AnimalsMESH: Genetic VariationMESH: Evolution MolecularGenetics0303 health scienceseducation.field_of_studyGeographybiology[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH : GeographyMESH: Genes MHC Class I[ SDE.MCG ] Environmental Sciences/Global Changes[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMate choiceMESH: Stochastic ProcessesMHC class IMESH : MutationSparrowsGene FlowGenetic MarkersMESH: Mutationbalancing selection[SDE.MCG]Environmental Sciences/Global ChangesPopulationMESH : Genetic DriftMESH: Genetics Populationchemical and pharmacologic phenomenaMESH : Stochastic ProcessesMajor histocompatibility complex010603 evolutionary biologyMESH : Genes MHC Class IEvolution Molecular03 medical and health sciencesMESH : Genetic VariationMHC class IGeneticsPasser domesticusMESH : Selection (Genetics)AnimalsMESH : Evolution MolecularSelection GeneticMESH: Genetic DrifteducationAllelesMESH: Gene FlowEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologyLocal adaptationIsolation by distanceStochastic Processes[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologyhouse sparrowMESH: AllelesGenetic DriftGenetic Variationdiversifying selectionPasser domesticus.[ SDV.GEN.GA ] Life Sciences [q-bio]/Genetics/Animal geneticsMESH : Genetics Population[SDE.ES]Environmental Sciences/Environmental and Society[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal geneticsGenetics PopulationEvolutionary biologyMutationbiology.proteinMESH: Microsatellite RepeatsMESH : AnimalsMESH : Sparrows[SDE.BE]Environmental Sciences/Biodiversity and EcologyMESH : Alleles[ SDE.ES ] Environmental Sciences/Environmental and SocietyMicrosatellite Repeats
researchProduct

Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus).

2010

Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for…

0106 biological sciencesPlasmodium[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencessusceptibilityMajor Histocompatibility Complex[ SDE ] Environmental SciencesGene Frequency[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisResearch ArticlesGeneral Environmental ScienceGenetics0303 health sciencesbiologyPlasmodium relictumGeneral Medicine3. Good health[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyGenetic structure[SDE]Environmental Sciencesavian malariaGeneral Agricultural and Biological SciencesSparrowsMalaria AvianAntagonistic CoevolutionMajor histocompatibility complex010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular Biologyresistance03 medical and health sciencesAvian malariamedicinePasser domesticusAnimalsSelection GeneticAllelesSelection (genetic algorithm)030304 developmental biologyLocal adaptationGenetic diversity[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyGeneral Immunology and Microbiologydiversifying selectionbiology.organism_classificationmedicine.diseaseImmunity InnatePlasmodium relictumbiology.protein[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows.

2008

8 pages; International audience; Genes of the Major Histocompatibility Complex (Mhc) play a fundamental role during the immune response because MHC molecules expressed on cell surface allow the recognition and presentation of antigenic peptides to T-lymphocytes. Although Mhc alleles have been found to correlate with pathogen resistance in several host-parasite systems, several studies have also reported associations between Mhc alleles and an accrued infection risk or an accelerated disease progression. The existence of these susceptibility alleles is puzzling, as the cost generated by the infection should rapidly eliminate them from the population. Here, we show that susceptibility alleles…

0106 biological sciencesPlasmodiumMESH : Molecular Sequence DataMESH : DNAGenes MHC Class IMESH: Amino Acid Sequenceco-evolutionMESH: Base SequenceMESH : Microsatellite Repeats01 natural sciencessusceptibilityMESH: SparrowsPleiotropy[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsMESH : Malaria AvianGenetics0303 health scienceseducation.field_of_studybiologyMESH : Amino Acid Sequence[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH: DNAMESH: Genetic Predisposition to DiseaseMESH: Genes MHC Class I3. Good healthMESH: Malaria Avian[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH: Haemosporidaavian malariaSparrows[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyMalaria AvianMolecular Sequence DataPopulationMESH: Genetics PopulationMajor histocompatibility complex010603 evolutionary biologyMESH : Genes MHC Class Iresistance03 medical and health sciencesImmune systemAvian malariaMHC class ImedicinePasser domesticusAnimalsGenetic Predisposition to Disease[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmino Acid SequenceAlleleeducationAllelesEcology Evolution Behavior and Systematics030304 developmental biologyparasite competitionMESH: Molecular Sequence DataBase Sequencehouse sparrowMESH: PlasmodiumMESH: Alleles[ SDV.GEN.GA ] Life Sciences [q-bio]/Genetics/Animal geneticsDNAHaemosporidamedicine.diseaseMESH : Genetics PopulationHistocompatibility[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal geneticsGenetics PopulationMESH : PlasmodiumImmunologybiology.proteinMESH : Base SequenceMESH : Genetic Predisposition to DiseaseAntagonistic pleiotropyMESH : SparrowsMESH : AnimalsMESH : HaemosporidaMESH: Microsatellite RepeatsMESH : AllelesMicrosatellite Repeats[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Origin of the prolactin-releasing hormone (PRLH) receptors: evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during verte…

2004

We present seven new vertebrate homologs of the prolactin-releasing hormone receptor (PRLHR) and show that these are found as two separate subtypes, PRLHR1 and PRLHR2. Analysis of a number of vertebrate sequences using phylogeny, pharmacology, and paralogon analysis indicates that the PRLHRs are likely to share a common ancestry with the neuropeptide Y (NPY) receptors. Moreover, a micromolar level of NPY was able to bind and inhibit completely the PRLH-evoked response in PRLHR1-expressing cells. We suggest that an ancestral PRLH peptide started coevolving with a redundant NPY binding receptor, which then became PRLHR, approximately 500 million years ago. The PRLHR1 subtype was shown to have…

Prolactin-releasing hormoneGeneticsBase SequenceMolecular Sequence DataBiologyNeuropeptide Y receptorProlactinReceptors G-Protein-CoupledReceptors Neuropeptide YEvolution MolecularPhylogeneticsMolecular evolutionHormone receptorGene DuplicationGene duplicationVertebratesGeneticsAnimalsHumansReceptorPhylogenyGenomics
researchProduct