Evolution in Recycling Scenario
The recycling model argues the existence of an evolutionary connection between low mass X-ray binaries and radio millisecond pulsars. The main difficulties which this model finds in predict the parameters of the fully recycled millisecond pulsars, as mass and spin period, can be overcome by the onset of the so-called radio-ejection mechanism. This work is to provide observational support to the radio-ejection mechanism by inspecting the orbital and spin parameters of the known population of fully recycled radio pulsars and compare these with the expectation for the occurrence of this mechanism.
Search for radio pulsations in four anomalous X-ray pulsars and discovery of two new pulsars
We have performed deep searches for radio pulsations from four southern anomalous X-ray pulsars (AXPs) to investigate their physical nature in comparison with the rotation powered pulsars. The data were acquired using the Parkes radio telescope with the 1.4 GHz multibeam receiver. No pulsed emission with periodicity matching the X-ray ephemeris have been found in the observed targets down to a limit of ∼0.1 mJy. A blind search has also been performed on all the 13 beams of the multibeam receiver (the central beam being pointed on the target AXP), leading to the serendipitous discovery of two new radio pulsars and to the further detection of 18 pulsars. Also a search for single dispersed pul…
Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence
It is commonly believed that millisecond radio pulsars have been spun up by transfer of matter and angular momentum from a low-mass companion during an X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that of the accreting millisecond X-ray pulsars, transient systems that show periods of X-ray quiescence during which radio emission could switch on. The aim of this work is to search for millisecond pulsations from three accreting millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658, observed during their quiescent X-ray phases at high radio frequencies (5 - 8 GHz) in order to overcome the problem of the free-free absorption due to the matter…
Searching for pulsed emission from XTE J0929-314 at high radio frequencies
The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-31…
A model to interpret pulse phase shifts in AMXPs: SAX J1808.4-3658 as a proof of concept
Abstract: Observational evidences of erratic 1(st) harmonic pulse phase shifts in accreting millisecond X-ray pulsars pulse phase evolution was reported by several authors. This effect always go together with much more stable 2(nd) harmonics pulse phase delays. Different possible explanations of these phase shifts have been given in literature. But all these interpretations do not explain why the 2(nd) harmonic are more stable than the 1(st) harmonic. The explanation of such a behaviour is of fundamental importance in order to gain an insight on the NS rotational behaviour and to remove the still present interpretative ambiguity on the results of timing analysis. We propose a simple toy-mod…