0000000000411416

AUTHOR

Federico Lombardo

showing 3 related works from this author

Atomic emission and photon localization in 1D microcavity array

cavity QEDphoton localizationSettore FIS/03 - Fisica Della Materiapopulation trapping
researchProduct

Quantum non-Markovianity induced by Anderson localization

2017

As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence when an atom interacts with a disordered lattice one indeed observes, a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by rele…

Physics---Anderson localizationQuantum PhysicsMultidisciplinaryFOS: Physical sciences01 natural sciencesArticleSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasNormal modeExcited stateQuantum mechanics0103 physical sciencesPhenomenological modelAtomSpontaneous emissionQuantum information010306 general physicsQuantum Physics (quant-ph)QuantumScientific Reports
researchProduct

Photon localization versus population trapping in a coupled-cavity array

2014

We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependance on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first.

Physicseducation.field_of_studyQuantum Physicscavity array quantum transport open quantum systems cavity QEDPhotonQuantum decoherenceField (physics)PopulationFOS: Physical sciencesTrappingAtomic and Molecular Physics and OpticsAtomBound stateAtomic physicseducationQuantum Physics (quant-ph)Excitation
researchProduct