0000000000413436

AUTHOR

Jennifer Grant

showing 4 related works from this author

The CoSMOS L-band experiment in Southeast Australia

2007

The CoSMOS (Campaign for validating the Operation of the Soil Moisture and Ocean Salinity mission) campaign was conducted during November of 2005 in the Goulburn River Catchment, in SE Australia. The main objective of CoSMOS was to obtain a series of L-band measurements from the air in order to validate the L-band emission model that will be used by the SMOS (Soil Moisture and Ocean Salinity) ground segment processor. In addition, the campaign was designed to investigate open questions including the Sun-glint effect over land, the application of polarimetric measurements over land, and to clarify the importance of dew and interception for soil moisture retrievals. This paper summarises the …

Radiometer010504 meteorology & atmospheric sciencesMeteorologyPASSIVE MICROWAVES[SDV]Life Sciences [q-bio]BRIGHTNESS TEMPERATURE0211 other engineering and technologiesL-BAND EMISSION MODEL02 engineering and technology15. Life on land01 natural sciencesSalinity13. Climate action[SDE]Environmental SciencesSOIL MOISTUREEnvironmental scienceRadiometryDewGround segmentInterceptionWater contentCosmosComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region

2012

Abstract The SMOS (Soil Moisture and Ocean Salinity) mission was launched on November 2, 2009. Over the land surfaces, simultaneous retrievals of surface soil moisture (SM) and vegetation characteristics made from the multi-angular and dual polarization SMOS observations are now available from Level-2 (L2) products delivered by the European Space Agency (ESA). Therefore, first analyses evaluating the SMOS observations in terms of Brightness Temperatures (TB) and L2 products (SM and vegetation optical depth TAU) can be carried out over several calibration/validation (cal/val) sites selected by ESA over all continents. This study is based on SMOS observations and in situ measurements carried …

Mediterranean climate010504 meteorology & atmospheric sciences[SDV]Life Sciences [q-bio]0211 other engineering and technologiesSoil Science550 - Earth sciences02 engineering and technology01 natural sciencesVineyardNormalized Difference Vegetation Index14. Life underwaterComputers in Earth SciencesWater contentComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerGeology15. Life on land13. Climate actionBrightness temperatureSoil water[SDE]Environmental SciencesEnvironmental sciencesoil moisture; optical depth; retrievals; mediterranean environment; level 2 algorithm; brightness temperature; vineyards; soil; NDVI; MODIS;Moderate-resolution imaging spectroradiometerSMOS
researchProduct

Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach

2018

Estimating parameters for global climate models via combined active and passive microwave remote sensing data has been a subject of intensive research in recent years. A variety of retrieval algorithms has been proposed for the estimation of soil moisture, vegetation optical depth and other parameters. A novel attenuation-based retrieval approach is proposed here to globally estimate the gravimetric moisture of vegetation (m g ) and retrieve information about the amount of water [kg] per amount of wet vegetation [kg]. The parameter m g is particularly interesting for agro-ecosystems, to assess the status of growing vegetation. The key feature of the proposed approach is that it relies on mu…

010504 meteorology & atmospheric sciencesgravimetric moisture0211 other engineering and technologies02 engineering and technology01 natural scienceslaw.inventionlawVegetation optical depthRadarWater contentattenuation021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingLidarRadarVegetationMoistureAttenuationMicrowave radiometerVegetationSMAPMulti-sensorLidarGravimetric analysisRadiometer
researchProduct

Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA

2014

The Soil Moisture and Ocean Salinity (SMOS) mission provides multi-angular, dual-polarised brightness temperatures at 1.4 GHz, from which global soil moisture and vegetation optical depth (tau) products are retrieved. This paper presents a study of SMOS' tau product in 2010 and 2011 for crop zones of the USA. Retrieved tau values for 504 crop nodes were compared to optical/IR vegetation indices from the MODES (Moderate Resolution Imaging Spectroradiometer) satellite sensor, including the Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVE), Leaf Area Index (LAI), and a Normalised Difference Water Index (NOW!) product. tau values were observed to increase during the…

2. Zero hunger010504 meteorology & atmospheric sciences0211 other engineering and technologiesSoil ScienceGrowing seasonGeology02 engineering and technologyVegetationEnhanced vegetation index01 natural sciencesNormalized Difference Vegetation Indexvegetation optical depthLinear regressionEnvironmental scienceL-band radiometryModerate-resolution imaging spectroradiometerComputers in Earth SciencesLeaf area indexoptical vegetation indices[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingWater contentSMOS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct