0000000000413904

AUTHOR

Petr Kužel

showing 2 related works from this author

Terahertz electrical writing speed in an antiferromagnetic memory

2018

The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the…

Terahertz radiationPhysics::Optics02 engineering and technologyHardware_PERFORMANCEANDRELIABILITY01 natural sciences530Computer Science::Hardware ArchitectureHertz0103 physical sciencesHardware_INTEGRATEDCIRCUITSAntiferromagnetismAtomic lattice010306 general physicsResearch ArticlesSpin-½PhysicsMultidisciplinarybusiness.industrySciAdv r-articles021001 nanoscience & nanotechnologyelectrical writingFerromagnetismApplied Sciences and Engineeringwriting speedComputer ScienceOptoelectronicsCondensed Matter::Strongly Correlated Electronsantiferromagnetic memory0210 nano-technologybusinessRealization (systems)Research ArticleScience Advances
researchProduct

Elektrónová a pásová štruktúra CuMnAs študovaná optickou a fotoemissinou spektroskopiou

2017

Tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-orbit torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confi…

DiffractionCondensed Matter - Materials ScienceMaterials scienceSpintronicsCondensed matter physicsPhotoemission spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesspintronics DFT photoemission optical properties CuMnAs02 engineering and technologyCrystal structureElectronic structure021001 nanoscience & nanotechnology01 natural sciences3. Good healthTetragonal crystal systemCondensed Matter::Materials ScienceSpintronika DFT fotoemissia optické vlastnosti CuMnAs0103 physical sciencesPrecession electron diffraction010306 general physics0210 nano-technologyElectronic band structure
researchProduct