0000000000414167
AUTHOR
Heikki Haario
Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing
SummaryWe discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the ‘Global ozone monitoring of occultation of stars’ instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for…
Componentwise adaptation for high dimensional MCMC
We introduce a new adaptive MCMC algorithm, based on the traditional single component Metropolis-Hastings algorithm and on our earlier adaptive Metropolis algorithm (AM). In the new algorithm the adaption is performed component by component. The chain is no more Markovian, but it remains ergodic. The algorithm is demonstrated to work well in varying test cases up to 1000 dimensions.
Characteristic asymptotics for fast chemical reaction
Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter
Markov chain Monte Carlo (MCMC) methods are powerful computational tools for analysis of complex statistical problems. However, their computational efficiency is highly dependent on the chosen proposal distribution, which is generally difficult to find. One way to solve this problem is to use adaptive MCMC algorithms which automatically tune the statistics of a proposal distribution during the MCMC run. A new adaptive MCMC algorithm, called the variational Bayesian adaptive Metropolis (VBAM) algorithm, is developed. The VBAM algorithm updates the proposal covariance matrix using the variational Bayesian adaptive Kalman filter (VB-AKF). A strong law of large numbers for the VBAM algorithm is…