0000000000414187

AUTHOR

Tiziano Peraro

Matter Dependence of the Four-Loop Cusp Anomalous Dimension

We compute analytically the matter-dependent contributions to the quartic Casimir term of the four-loop light-like cusp anomalous dimension in QCD, with $n_f$ fermion and $n_s$ scalar flavours. The result is extracted from the double pole of a scalar form factor. We adopt a new strategy for the choice of master integrals with simple analytic and infrared properties, which significantly simplifies our calculation. To this end we first identify a set of integrals whose integrands have a dlog form, and are hence expected to have uniform transcendental weight. We then perform a systematic analysis of the soft and collinear regions of loop integration and build linear combinations of integrals w…

research product

First Look at Two-Loop Five-Gluon Scattering in QCD.

We compute the leading colour contributions to five-gluon scattering at two loops in massless QCD. The integrands of all independent helicity amplitudes are evaluated using d-dimensional generalised unitarity cuts and finite field reconstruction techniques. Numerical evaluation of the integral basis is performed with sector decomposition methods to obtain the first benchmark results for all helicity configurations of a 2 to 3 scattering process in QCD.

research product

Analytic form of the full two-loop five-gluon all-plus helicity amplitude

We compute the full-color two-loop five-gluon amplitude for the all-plus helicity configuration. In order to achieve this, we calculate the required master integrals for all permutations of the external legs, in the physical scattering region. We verify the expected divergence structure of the amplitude, and extract the finite hard function. We further validate our result by checking the factorization properties in the collinear limit. Our result is fully analytic and valid in the physical scattering region. We express it in a compact form containing logarithms, dilogarithms and rational functions.

research product

Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD

We review the current state-of-the-art in integrand level reduction for five-point scattering amplitudes at two loops in QCD. We present some benchmark results for the evaluation of the leading colour two-loop five-gluon amplitudes in the physical region as well as the partonic channels for two quarks and three gluons and four quarks and one gluon.

research product