0000000000414427
AUTHOR
C. Binois
Statistical Analysis of Heavy-Ion Induced Gate Rupture in Power MOSFETs—Methodology for Radiation Hardness Assurance
A methodology for power MOSFET radiation hardness assurance is proposed. It is based on the statistical analysis of destructive events, such as gate oxide rupture. Examples of failure rate calculations are performed.
Influence of beam conditions and energy for SEE testing
GANIL/Applications industrielles; The effects of heavy-ion test conditions and beam energy on device response are investigated. These effects are illustrated with two types of test vehicles: SRAMs and power MOSFETs. In addition, GEANT4 simulations have also been performed to better understand the results. Testing to high fluence levels is required to detect rare events. This increases the probability of nuclear interactions. This is typically the case for power MOSFETs, which are tested at high fluences for single event burnout or gate rupture detection, and for single-event-upset (SEU) measurement in SRAMs below the direct ionization threshold. Differences between various test conditions (…