0000000000414438

AUTHOR

Eva Primo

0000-0001-9979-5592

showing 4 related works from this author

Compactness of Fourier integral operators on weighted modulation spaces

2019

Using the matrix representation of Fourier integral operators with respect to a Gabor frame, we study their compactness on weighted modulation spaces. As a consequence, we recover and improve some compactness results for pseudodifferential operators.

Modulation spacePure mathematicsPseudodifferential operatorsApplied MathematicsGeneral Mathematics010102 general mathematicsMatrix representationGabor frame01 natural sciencesFourier integral operatorFunctional Analysis (math.FA)Mathematics - Functional Analysis35S30 47G30 42C15Compact spaceFOS: Mathematics0101 mathematicsMathematicsTransactions of the American Mathematical Society
researchProduct

Some remarks on unconditionally convergent multipliers

2017

We present some results concerning the representation of unconditionally convergent multipliers, including a reformulation of a conjecture of Balazs and Stoeva.

Conjecture010102 general mathematicsHilbert spaceData_CODINGANDINFORMATIONTHEORY01 natural sciencesElectronic mail010101 applied mathematicssymbols.namesakeConvergence (routing)symbolsCalculusApplied mathematicsHardware_ARITHMETICANDLOGICSTRUCTURES0101 mathematicsRepresentation (mathematics)Mathematics2017 International Conference on Sampling Theory and Applications (SampTA)
researchProduct

On Fourier integral operators with Hölder-continuous phase

2018

We study continuity properties in Lebesgue spaces for a class of Fourier integral operators arising in the study of the Boltzmann equation. The phase has a H\"older-type singularity at the origin. We prove boundedness in $L^1$ with a precise loss of decay depending on the H\"older exponent, and we show by counterexamples that a loss occurs even in the case of smooth phases. The results can be seen as a quantitative version of the Beurling-Helson theorem for changes of variables with a H\"older singularity at the origin. The continuity in $L^2$ is studied as well by providing sufficient conditions and relevant counterexamples. The proofs rely on techniques from Time-frequency Analysis.

Modulation spaceApplied Mathematics010102 general mathematicsMathematical analysisShort-time Fourier transformPhase (waves)Hölder conditionFourier integral operators; modulation spaces; short-time Fourier transform; Analysis; Applied Mathematics01 natural sciencesBoltzmann equationFourier integral operatorMathematics - Functional Analysis010101 applied mathematicsSingularityshort-time Fourier transformFourier integral operators0101 mathematicsLp spacemodulation spacesMathematical PhysicsAnalysisMathematics
researchProduct

Unconditionally convergent multipliers and Bessel sequences

2016

Abstract We prove that every unconditionally summable sequence in a Hilbert space can be factorized as the product of a square summable scalar sequence and a Bessel sequence. Some consequences on the representation of unconditionally convergent multipliers are obtained, thus providing positive answers to a conjecture by Balazs and Stoeva in some particular cases.

Discrete mathematicsConjectureApplied Mathematics010102 general mathematicsScalar (mathematics)Mathematics::Classical Analysis and ODEsHilbert space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMultiplier (Fourier analysis)030507 speech-language pathology & audiology03 medical and health sciencessymbols.namesakeBessel polynomialsFOS: MathematicssymbolsUnconditional convergence0101 mathematics0305 other medical scienceAnalysisBessel functionMathematicsJournal of Mathematical Analysis and Applications
researchProduct