0000000000414445
AUTHOR
Weiping Liu
Beta decay of $^{61}$Ga
The β decay of 61Ga to its mirror nucleus 61Zn has been measured for the first time by using on-line mass separation and β-delayed gamma-ray spectroscopy. The observed decay strength to the ground state implies superallowed character in accordance with the systematics of the mirror decays in the sd and fp shell. The β feedings observed to four excited states in 61Zn are consistent with earlier spin-parity assignments based on in-beam experiments. The ground-state spin and parity for 61Ga were determined to be 3/2−.
$\beta$ - decay of the M$_{T}$=-1 nucleus $^{58}$Zn studied by selective laser ionization
$\beta$ - decay of $^{58}$Zn has been studied for the first time. A new laser ion-source concept has been used to produce mass-separated sources for $\beta$ and $\gamma$ - spectroscopy. The half-life of $^{58}$Zn was determined to be 86(18) ms. Comparisons are made with previous data from charge-exchange reactions. Our Gamow-Teller strength to the 1$^{+}$ state at 1051 keV excitation in $^{58}$Cu agrees well with the value extracted from a recent ($^{3}$He, t) study. Extensive shell-model calculations are presented.
Beta-decay of 56Cu
Beta-decay studies of proton-rich isotopes near the doubly closed-shell nucleus 56Ni are of interest as (i) nuclei with a few nucleons outside a doubly-magic core are expected to represent comparatively simple configurations and thus be useful for testing nuclear shell-model predictions, and (ii) the large decay-energy window guarantees that a sizeable fraction of the strength of the allowed β-decay can be reached by the experiment. Moreover, nuclear structure properties of proton-rich N ~ Z isotopes are of astrophysical interest, e.g., concerning the EC cooling of supernovae and the astrophysical rp-process.