0000000000414472

AUTHOR

Marco Gucciardi

NEW PERSPECTIVES ON LIGHTWEIGHT SHEET METAL ALLOYS MANUFACTURING BY SINGLE POINT INCREMENTAL FORMING

research product

Study of forming mechanics of magnetic field–assisted single point incremental forming

This paper describes the forming characteristics and mechanics of magnetic field–assisted single point incremental forming (M-SPIF) in which an Nd-Fe-B magnet ball tool is placed on top of a piece of sheet metal and is driven by an Nd-Fe-B magnet placed below the workpiece. To gain an understanding of the force mechanics that power M-SPIF, the tool motion and forming force were experimentally analyzed. In M-SPIF, the forming force is applied multi-directionally, and the resultant force direction is nearly colinear with the polarity of the permanent magnet ball tool. This suggests that the forming characteristics in M-SPIF may be controllable by controlling the magnetic polarity of the tool.

research product

Development of Magnetic Field-Assisted Single-Point Incremental Forming

Single Point Incremental Forming (SPIF) has recently introduced the concept of material formability enhancement through localized deformation. Since material is processed by means of a pin tool attached to spindle, physical interference (especially in vertical direction) limits attainable shapes with the conventional process. The aim of the following work is to increase the variety of achievable geometries with SPIF through in-process magnetic field assistance. An innovative configuration managing SPIF tool movement using magnetic force is proposed. With this in mind, a magnet configuration was designed to generate a vertical load able to plastically deform a 0.5 mm thick AA1100 aluminum sh…

research product

Magnetic field-assisted single-point incremental forming with a magnet ball tool

Abstract This paper describes magnetic field-assisted single-point incremental forming (M-SPIF) with a Nd-Fe-B magnet ball tool. In M-SPIF, the tool driven by magnetic force plastically deforms a sheet. The polarity of the magnet tool helps to make the magnetic force (i.e., forming force) more controllable. In creating a truncated cone, the direction of the magnetic force gradually points more outward as the process progresses, and material is forced outwards from the cone center, increasing thinning in M-SPIF, while the cone center remains undeformed in traditional SPIF. Moreover, M-SPIF creates less localized plastic strain than traditional SPIF while forming the desired geometry.

research product

A novel approach to enhance mechanical properties during recycling of aluminum alloy scrap through friction stir consolidation

Solid state recycling (SSR) is a new approach for making metals recycling more efficient with respect to remelting-based approaches. Friction stir consolidation (FSC) is a new solid-state process that is employed to recycle metallic scraps. Until now, a single-step FSC process was applied to recycled metal chips. During the single-step approach, critical processes parameters, especially processing time and rotational speed, are considered vital to control the quality and mechanical properties of the billet. However, the effectiveness of process parameters is highly restricted by challenging masses of recycling chips and machine competency. The present study first highlights the issues of th…

research product

Outlining the Limits of Friction Stir Consolidation as Used as an Aluminum Alloys Recycling Approach

Friction stir consolidation (FSC) is a solid-state process that recycles metal scraps economically and eco-friendly compared to the conventional melting method. The process parameters especially processing time and rotational speed, have a crucial role in achieving a sound disc during FSC. The current study answers the research question of how far these process parameters can be effective when the mass of chips to be recycled increases. In specific, an experimental setup was analyzed that was previously identified as challenging for recycling 20 g chips of aluminum alloy AA 2024-O. Rotational speed was set doubled, and processing time was increased up to 1.5 times of their initial values. T…

research product

Multi-directional vs. mono-directional multi-step strategies for single point incremental forming of non-axisymmetric components

Abstract Multi Stage approach is used in Single Point Incremental Forming (SPIF) to overcome one of the main forming limitations, namely the maximum wall angle, characterizing the single stage process. In this paper, different multi-path strategies for the production of parts with flat edges are considered in order to evaluate the best solution in terms of feasibility and geometrical accuracy of the final part: A) mono-directional incremental draw angle; B) mono-directional incremental draw angle with increasing part side; C) Multi-directional approach with non-horizontal path planes. Strain evaluation by means of CGA (Circular Grid Analysis) and defect analysis have been carried out in ord…

research product