The QCD Axion and Gravitational Waves in light of NANOGrav results
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration has recently reported strong evidence for a stochastic process affecting the 12.5 yr dataset of pulsar timing residuals. We show that the signal can be interpreted in terms of a stochastic gravitational wave background emitted from a network of axionic strings in the early Universe. The spontaneous breaking of the Peccei-Quinn symmetry originate the axionic string network and the QCD axion, the dark matter particle in the model. We explore a non-standard cosmological model driven by an exotic scalar field $\phi$ which evolves under the influence of a self-interacting potential; the axion field starts t…
Do we have any hope of detecting scattering between dark energy and baryons through cosmology?
We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the Cosmic Microwave Background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections $\sigma_{xb} \sim {\cal O}({\rm b})$, which are generically excluded by non-cosmological probes such as col…
In the realm of the Hubble tension—a review of solutions
The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with en…