0000000000415052

AUTHOR

Bin Ma

showing 3 related works from this author

Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons

2011

Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of β-actin mRNA. Live cell imaging demonstrated that β-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, H…

congenital hereditary and neonatal diseases and abnormalitiesHuntingtinDyneinModels NeurologicalBiological Transport ActiveKinesinsRNA-binding proteinNerve Tissue Proteinsmacromolecular substancesBiologyCytoplasmic GranulesMicrotubulesArticle03 medical and health sciences0302 clinical medicineMicrotubulemental disordersProtein biosynthesisMRNA transportAnimalsRNA MessengerRNA Small InterferingRats WistarCells Cultured030304 developmental biologyNeurons0303 health sciencesHuntingtin ProteinMultidisciplinaryMolecular Motor ProteinsBrainDyneinsNuclear ProteinsRNA-Binding ProteinsDendritesActinsCell biologynervous system diseasesRatsDendritic transportnervous systemGene Knockdown TechniquesKinesinFemale030217 neurology & neurosurgerySignal TransductionScientific Reports
researchProduct

TLR4 stimulation by LPS enhances angiogenesis in a co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells

2015

The development of new approaches leading to fast and successful vascularization of tissue-engineered constructs is one of the most intensively studied subjects in tissue engineering and regenerative medicine. Recently, TLR4 activation and LPS stimulation of endothelial cells have been reported to promote angiogenesis in a variety of settings. In this study, we demonstrate that TLR4 activation by Ultrapure LPS Escherichia coli 0111:B4 (LPS-EB) significantly enhances microvessel formation in a co-culture system consisting of outgrowth endothelial cells (OECs) and primary human osteoblasts (pOBs). The precise modes of TLR4 action on the process of angiogenesis have also been investigated in t…

0301 basic medicineLipopolysaccharideAngiogenesisCell adhesion moleculeBiomedical EngineeringMedicine (miscellaneous)BiologyRegenerative medicineCell biologyBiomaterials03 medical and health scienceschemistry.chemical_compound030104 developmental biologyTissue engineeringchemistryIn vivoImmunologyTLR4lipids (amino acids peptides and proteins)MicrovesselJournal of Tissue Engineering and Regenerative Medicine
researchProduct

Short‐term hypoxia promotes vascularization in co‐culture system consisting of primary human osteoblasts and outgrowth endothelial cells

2019

Prevascularization of tissue constructs before implantation has been developed as a novel and promising concept for successful implantation. Since hypoxia might induce angiogenesis, we have investigated the effects of hypoxic treatment on vascularization by using co-cultures of primary human osteoblasts (POBs) and outgrowth endothelial cells. Our results show that: (a) repeated short-term hypoxia (2% O2 for 8 hr), not long-term hypoxia (2% O2 for 24 hr), over 1 or 2 weeks, significantly enhances microvessel formation in co-cultures; (b) sustained hypoxia, not short-term or long-term hypoxia, causes cytotoxicity in mono- and co-cultures; (c) the expression of some angiogenic and inflammatory…

Time FactorsMaterials scienceCell SurvivalAngiogenesisProtein subunitmedicine.medical_treatment0206 medical engineeringBiomedical EngineeringNeovascularization Physiologic02 engineering and technologyBone tissueBiomaterialschemistry.chemical_compoundmedicineHumansRNA MessengerCytotoxicityMicrovesselCells CulturedOsteoblastsCell DeathGrowth factorMetals and AlloysEndothelial CellsHypoxia (medical)021001 nanoscience & nanotechnology020601 biomedical engineeringCell HypoxiaCoculture TechniquesUp-RegulationVascular endothelial growth factormedicine.anatomical_structurechemistryCeramics and CompositesCancer researchInflammation Mediatorsmedicine.symptom0210 nano-technologyJournal of Biomedical Materials Research Part A
researchProduct