0000000000415204
AUTHOR
L. V. Noto
Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses
AbstractThe Mediterranean basin is particularly prone to climate change and vulnerable to its impacts. One of the most relevant consequences of climate change, especially for the southern Mediterranean regions, is certainly water scarcity as result of a reduction of surface runoff and groundwater levels. Despite the progress achieved in recent years in the field of climate change and its impact on water resources, results and outcomes should be treated with due caution since any future climate projection and derived implications are inevitably affected by a certain degree of uncertainty arising from each different stage of the entire modeling chain. This work offers a comprehensive overview…
EHSM: a conceptual ecohydrological model for daily streamflow simulation
A parsimonious conceptual lumped model is here presented with the aim of simulating daily streamflow in semi-arid areas. The model, processing daily rainfall and reference evapotranspiration at basin scale, reproduces surface and subsurface runoff, soil moisture dynamics, and actual evapotranspiration fluxes. The key elements of this numerical model are the soil bucket, where rainfall, evapotranspiration, and leakage drive soil moisture dynamics, and two linear reservoirs working in parallel with different characteristic response times. The surface reservoir, able to simulate the fast response of the basin, is fed by rain falling on impervious area and by runoff generated with excess of sat…
Co-evolution of hydrological components under climate change scenarios in the Mediterranean area
ABSTRACT The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale …
An automatic tool for reconstructing monthly time-series of hydro-climatic variables at ungauged basins
Abstract Integrative information models for filling/reconstructing hydro-climatic time-series are required for a variety of practical applications. A GIS-based model for a rapid and reliable assessment of monthly time-series of several key hydro-climatic variables at the basin scale, is here developed as plug-in and applied to the entire region of Sicily (Italy). The plug-in, once the desired basin outlet section and time-window are selected, uses appropriate spatial techniques and algorithms to identify its drainage area and estimate the corresponding mean areal rainfall and temperatures time-series. A recent regional regressive rainfall-runoff model is successively applied for the assessm…
Daily streamlow prediction with uncertainty in ephemeral catchments using the GLUE methodology
Abstract The Generalised Likelihood Uncertainty Estimation (GLUE) approach is presented here as a tool for estimating the predictive uncertainty of a rainfall–runoff model. The GLUE methodology allows to recognise the possible equifinality of different parameter sets and assesses the likelihood of a parameters set being acceptable simulator when model predictions are compared to observed field data. The results of the GLUE methodology depend greatly on the choice of the likelihood measure and on the choice of the threshold which determines if a parameters set is behavioural or not. Moreover the sampling size has a strong influence on the uncertainty assessment of the response of a rainfall–…
Study of vegetation evolution in Sicily using time series analysis of remote sensing and climatic data.
During last 10 years, several studies confirmed that drought phenomena are affecting southern Mediterranean areas. One of the effects of a persistent drought is a modification of the vegetation cover and biomass. The aim of our research is to investigate and monitor the evolution of this phenom- enon in Sicily using remote sensing techniques. To do this, a data set of NOAA-AVHRR multispectral images, acquired monthly from 1988 to 2005, has been calibrated and processed. A time series analysis (TSA) has been applied both on the NDVI and precipitation data sets in order to study the main characteristics of vegetation distribution during the period under investigation and to compare the vegeta…
Annual runoff assessment in arid and semiarid Mediterranean watersheds under the Budyko's framework
The solution of many practical water problems is strictly connected to the availability of reliable and widespread information about runoff. The estimation of mean annual runoff and its interannual variability for any basin over a wide region, even if ungauged, would be fundamental for both water resources assessment and planning and for water quality analysis. Starting from these premises, the main aim of this work is to show a new approach, based on the Budyko's framework, for mapping the mean annual surface runoff and deriving the probability distribution of the annual runoff in arid and semiarid watersheds. As a case study, the entire island of Sicily, Italy, is here proposed. First, ti…
Rainfall statistics changes in Sicily
Abstract. Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the mos…
Detecting precipitation trend using a multiscale approach based on quantile regression over a Mediterranean area
One of the most relevant and debated topics related to the effects of the climate change is whether intense rainfall events have become more frequent over the last decades. It is a crucial aspect, since an increase in the magnitude and frequency of occurrence of heavy rainfall events could result in a dramatic growth of floods and, in turn, human lives losses and economic damages. Because of its central position in the Mediterranean area, Sicily has been often screened with the aim to capture some trends in precipitation, potentially related to climate change. While Mann-Kendall test has been largely used for the rainfall trend detection, in this work a different procedure is considered. Pr…