0000000000415244

AUTHOR

Britta Planer-friedrich

0000-0002-0656-4283

Active moss monitoring allows to identify and track distribution of metal(loid)s emitted from fumaroles on Vulcano Island, Italy

Abstract Volatile metal(loid)s are known to be emitted from volcanoes worldwide. We tested the suitability of active moss monitoring for tracking volatile metal(loid)s released from the fumarolic field on Vulcano Island, Italy, and differentiated fumaroles from other sources of gaseous and particulate trace elements such as sea spray and soil. Metal(loid) accumulation on the mosses per day did depend neither on the state of the exposed moss (dead or living) nor exposure time (3, 6, or 9 weeks). After collection, mosses were digested with either HNO3/H2O2 or deionized water and analyzed by ICP-MS. While for most elements both extraction methods yielded similar concentrations, higher concentr…

research product

Using mosses as biomonitors to study trace element emissions and their distribution in six different volcanic areas

Volcanoes emit SO2, CO2, and H2S, but also trace elements gases and particles such as As, Cd, Cr, Cu, Hg, Ni, Pb, and Sb. Active moss bag biomonitoring, an easy to apply and low budget method, was used to determine trace element release from volcanic areas of different geological context and climates. Exposure height variations (0.7–1.6 m above ground) due to different availability of natural tie points did not affect the results. Accumulation was linear for exposure durations from three days to nine weeks, so values were comparable by normalization to moss exposure time. Uncovered moss bags showed higher accumulation than co-exposed covered ones because of additional dust and wet deposit…

research product

Abundant and diverse arsenic‐metabolizing microorganisms in peatlands treating arsenic‐contaminated mining wastewaters

Mining operations produce large quantities of wastewater. At a mine site in Northern Finland, two natural peatlands are used for the treatment of mining‐influenced waters with high concentrations of sulfate and potentially toxic arsenic (As). In the present study, As removal and the involved microbial processes in those treatment peatlands (TPs) were assessed. Arsenic‐metabolizing microorganisms were abundant in peat soil from both TPs (up to 108 cells gdw‐1), with arsenate respirers being about 100 times more abundant than arsenite oxidizers. In uninhibited microcosm incubations, supplemented arsenite was oxidized under oxic conditions and supplemented arsenate was reduced under anoxic con…

research product