0000000000415283

AUTHOR

Gene Freudenburg

showing 3 related works from this author

Locally nilpotent derivations of rings graded by an abelian group

2019

International audience

Russel cubic threefoldPure mathematicsAffine algebraic geometryPham-Brieskorn variety010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Locally nilpotent13A50Locally nilpotent derivation01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Russell cubic threefold0103 physical sciences010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsAbelian group14R20MSC: Primary 14R20 ; Secondary 13A50ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Locally nilpotent derivations of rings with roots adjoined

2013

Algebra14L30General MathematicsLocally nilpotent13A5014R2013N15Mathematics
researchProduct

Embeddings of Danielewski surfaces

2003

A Danielewski surface is defined by a polynomial of the form P=x nz −p(y). Define also the polynomial P ′ =x nz −r(x)p(y) where r(x) is a non-constant polynomial of degree ≤n−1 and r(0)=1. We show that, when n≥2 and deg p(y)≥2, the general fibers of P and P ′ are not isomorphic as algebraic surfaces, but that the zero fibers are isomorphic. Consequently, for every non-special Danielewski surface S, there exist non-equivalent algebraic embeddings of S in ℂ3. Using different methods, we also give non-equivalent embeddings of the surfaces xz=(y d n >−1) for an infinite sequence of integers d n . We then consider a certain algebraic action of the orthogonal group $\mathcal O(2)$ on ℂ4 which was…

CombinatoricsDiscrete mathematicsSurface (mathematics)PolynomialDegree (graph theory)General MathematicsAlgebraic surfaceTangent spaceZero (complex analysis)Orthogonal groupAlgebraic numberMathematicsMathematische Zeitschrift
researchProduct