0000000000415283
AUTHOR
Gene Freudenburg
showing 3 related works from this author
Locally nilpotent derivations of rings graded by an abelian group
2019
International audience
Locally nilpotent derivations of rings with roots adjoined
2013
Embeddings of Danielewski surfaces
2003
A Danielewski surface is defined by a polynomial of the form P=x nz −p(y). Define also the polynomial P ′ =x nz −r(x)p(y) where r(x) is a non-constant polynomial of degree ≤n−1 and r(0)=1. We show that, when n≥2 and deg p(y)≥2, the general fibers of P and P ′ are not isomorphic as algebraic surfaces, but that the zero fibers are isomorphic. Consequently, for every non-special Danielewski surface S, there exist non-equivalent algebraic embeddings of S in ℂ3. Using different methods, we also give non-equivalent embeddings of the surfaces xz=(y d n >−1) for an infinite sequence of integers d n . We then consider a certain algebraic action of the orthogonal group $\mathcal O(2)$ on ℂ4 which was…