0000000000415487

AUTHOR

E. Dupont

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

research product

7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…

research product

The n_TOF facility: Neutron beams for challenging future measurements at CERN

The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…

research product

Chirality of 135 Nd reexamined : Evidence for multiple chiral doublet bands

One new pair of positive-parity chiral doublet bands have been identified in the odd-A nucleus 135Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (MχD) bands in the A ≈ 130 mass region. The properties of the MχD bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed MχD bands in 135Nd represents an important milestone in supporting the existence of MχD in nuclei. peerReviewed

research product

Evolution from γ -soft to stable triaxiality in Nd136 as a prerequisite of chirality

The level structure of Nd136 has been investigated using the Mo100(Ar40,4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of Nd136 is now clarified and the various types of single-particle and collective excitations are well underst…

research product

Tilted precession bands in Nd135

Two new excited bands built on the πh11/2 configuration have been identified in Nd135 in addition to the known πh11/2 band. The energy spectra of the excited bands and the available electromagnetic transition probabilities are in good agreement with theoretical results obtained using quasiparticle-plus-triaxial-rotor model calculations. The properties of the bands identify them as tilted precession bands instead of wobbling bands. Our results give a new insight into the interpretation of the low-lying bands in odd-A mass nuclei, and can stimulate future studies to address the nuclear triaxiality.

research product

Evidence of chiral bands in even-even nuclei

Evidence for chiral doublet bands has been observed for the first time in the even-even nucleus 136 Nd . One chiral band was firmly established. Four other candidates for chiral bands were also identified, which can contribute to the realization of the multiple pairs of chiral doublet bands ( M χ D ) phenomenon. The observed bands are investigated by the constrained and tilted axis cranking covariant density functional theory (TAC-CDFT). Possible configurations have been explored. The experimental energy spectra, angular momenta, and B ( M 1 ) / B ( E 2 ) values for the assigned configurations are globally reproduced by TAC-CDFT. Calculated results support the chiral interpretation of the o…

research product

New reaction rates for the destruction of $^7$Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological lithium problem

New measurements of the7Be(n,α)4He and7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.

research product

Annealing reactions in lead implanted copper

Abstract The terminal solubility of Pb in Cu is extremely low and does not exceed 0.09 at.% at 875 K. Ion implantation of lead ions at 100 keV into Cu single crystals produces metastable solutions. Annealing of the samples causes redistribution of the implanted atoms to equilibrium or near-equilibrium aggregate states which may be reflected in a change in the type of impurity lattice location in the host matrix. We have studied the effect of annealing on single crystalline Cu implanted at temperatures around 375 K with Pb to a concentration of a 1–2 at.%. Rutherford backscattering/channeling analysis and transmission electron microscopy of the as-implanted samples have shown that the implan…

research product

Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN

The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…

research product

Signatures of enhanced octupole correlations at high spin in 136Nd

Experimental signatures of moderately enhanced octupole correlations at high spin in 136Nd are indicated for the first time. The extracted dipole moments of two negative-parity bands are only two times smaller than those of the lanthanide nuclei with N≈90 which present well-established octupole correlations. Calculations using the cranked quasiparticle random phase approximation and a model of quadrupole-octupole rotations with octupole vibrations reveal the structure of the bands and the enhanced octupole correlations at high spin in 136Nd. peerReviewed

research product

The Nuclear astrophysics program at n_TOF (CERN)

An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…

research product

Highly deformed bands in Nd nuclei: New results and consistent interpretation within the cranked Nilsson-Strutinsky formalism

International audience; Three new highly-deformed (HD) bands are identified in Nd136 and the highly deformed band of Nd137 is extended at higher spin by four transitions, revealing a band crossing associated with the occupation of the second νi13/2 intruder orbital. Extended cranked Nilsson-Strutinsky calculations are performed for all HD bands observed in Nd134, Nd136, and Nd137, achieving for the first time a consistent interpretation of all HD bands in the Nd nuclei. The new interpretation has significant consequences, like the change of parity of the yrast HD bands of Nd134 and Nd136, and the involvement of two negative-parity neutron intruder orbitals in the configurations of most HD b…

research product

The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region

The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).

research product

The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study

The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved.

research product

Evidence of octupole-phonons at high spin in 207Pb

A lifetime measurement of the 19/2 state in Pb has been performed using the Recoil Distance Doppler-Shift (RDDS) method. The nuclei of interest were produced in multi-nucleon transfer reactions induced by a Pb beam impinging on a Mo enriched target. The beam-like nuclei were detected and identified in terms of their atomic mass number in the VAMOS++ spectrometer while the prompt γ rays were detected by the AGATA tracking array. The measured large reduced transition probability B(E3,19/2→13/2)=40(8) W.u. is the first indication of the octupole phonon at high spin in Pb. An analysis in terms of a particle-octupole-vibration coupling model indicates that the measured B(E3) value in Pb is compa…

research product

Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities

The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…

research product

Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…

research product

The measurement programme at the neutron time-of-flight facility n_TOF at CERN

Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…

research product

Evidence against the wobbling nature of low-spin bands in 135Pr

International audience; The electromagnetic character of the ΔI=1 transitions connecting the 1- to 0-phonon and the 2- to 1-phonon wobbling bands should be dominated by an E2 component, due to the collective motion of the entire nuclear charge. In the present work it is shown, based on combined angular correlation and linear polarization measurements, that the mixing ratios of all analyzed connecting transitions between low-lying bands in 135Pr interpreted as 0-, 1-, and 2-phonon wobbling bands, have absolute values smaller than one. This indicates predominant M1 magnetic character, which is incompatible with the proposed wobbling nature. All experimental observables are instead in good agr…

research product

Tilted precession bands in $^{135}$Nd

International audience; Two new excited bands built on the πh11/2 configuration have been identified in Nd135 in addition to the known πh11/2 band. The energy spectra of the excited bands and the available electromagnetic transition probabilities are in good agreement with theoretical results obtained using quasiparticle-plus-triaxial-rotor model calculations. The properties of the bands identify them as tilted precession bands instead of wobbling bands. Our results give a new insight into the interpretation of the low-lying bands in odd-A mass nuclei, and can stimulate future studies to address the nuclear triaxiality.

research product

Collective rotation of an oblate nucleus at very high spin

International audience; A sequence of nine almost equidistant quadrupole transitions is observed in Nd137. The sequence represents an extremely regular rotational band that extends to a spin of about 75/2 and an excitation energy of ≈4.5MeV above yrast. Cranked mean-field calculations of the Nilsson-Strutinsky type suggest an oblate shape for the band. They reproduce the observed I(I+1) dependence of the rotational energy whereas predicting a pronounced decrease in the deformation, which is the hallmark of antimagnetic rotation.

research product

Characterization and First Test of an i-TED Prototype at CERN n_TOF

International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…

research product

Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality

The level structure of 136Nd has been investigated using the 100Mo(40Ar, 4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of 136Nd is now clarified and the various types of single-particle and collective excitations are well unders…

research product

Nuclear data activities at the n_TOF facility at CERN

International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…

research product