0000000000416041
AUTHOR
Giovanni Pagano
Gender- and age-related distinctions for the in vivo prooxidant state in Fanconi anaemia patients.
Abstract Some selected oxidative stress parameters were measured in 56 Fanconi anaemia (FA) patients (42 untransplanted and 14 transplanted), 54 FA heterozygotes (parents) and 173 controls. Untransplanted FA patients showed a highly significant increase in leukocyte 8-hydroxy-2’-deoxyguanosine (8-OHdG) (p = 0.00003) and a borderline increase (p = 0.076) in urinary levels of 8-OHdG vs. child controls. These increases were more pronounced in female FA patients (p = 0.00005 for leukocyte 8-OHdG, and p = 0.021 for urinary 8-OHdG). Female FA patients also displayed a highly significant excess of spontaneous chromosomal breaks vs. male patients (p = 0.00026), in the same female:male ratio (≅ 1.4)…
Mutilazionoi genitali femminili: tra mito e realtà.
Glutathione levels in blood from ataxia telangiectasia patients suggest in vivo adaptive mechanisms to oxidative stress
Objective: To evaluate an in vivo pro-oxidant state in patients with ataxia telangiectasia (AT). Methods: A set of oxidative stress endpoints were measured in 9 AT homozygotes, 16 AT heterozygotes (parents) and 83 controls (grouped in age ranges as for patients and parents, respectively). The following analytes were measured: (a) leukocyte 8-hydroxy-2-deoxyguanosine (8-OHdG); (b) blood glutathione (GSSG and GSH); and (c) plasma levels of glyoxal (Glx) and methylglyoxal (MGlx). Results: AT patients displayed a significant decrease in blood GSSG (p=0.012) and in MGlx plasma concentrations (P=0.012). A nonsignificant decrease in the GSSG:GSH ratio (p = 0.1) and a non-significant increase in 8-…
Different patterns of in vivo pro-oxidant states in a set of cancer- or aging-related genetic diseases
A comparative evaluation is reported of pro-oxidant states in 82 patients with ataxia telangectasia (AT), Bloom syndrome (BS), Down syndrome (DS), Fanconi anemia (FA), Werner syndrome (WS), and xeroderma pigmentosum (XP) vs 98 control donors. These disorders display cancer proneness, and/or early aging, and/or other clinical features. The measured analytes were: (a) leukocyte and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), (b) blood glutathione (GSSG and GSH), (c) plasma glyoxal (Glx) and methylglyoxal (MGlx), and (d) some plasma antioxidants [uric acid (UA) and ascorbic acid (AA)]. Leukocyte 8-OHdG levels ranked as follows: WS>BS approximately FA approximately XP>DS approximately AT appr…
Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtures.
A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., alpha-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential-and distinct-roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly…
In vivoprooxidant state in Werner syndrome (WS): Results from three WS patients and two WS heterozygotes
The hypothesis was tested that Werner syndrome (WS) phenotype might be associated with an in vivo prooxidant state. A set of redox-related endpoints were measured in three WS patients, two of their parents, and 99 controls within a study of some cancer-prone and/or ageing-related genetic disorders. The following analytes were measured: (a) leukocyte 8-hydroxy-2'-deoxyguanosine; (b) glutathione from whole blood, and (c) plasma levels of glyoxal, methylglyoxal, 8-isoprostane, and some plasma antioxidants (uric acid, ascorbic acid, alpha- and gamma-tocopherol). Leukocyte 8-hydroxy-2'-deoxyguanosine levels showed a significant increase in the 3 WS patients vs. 85 controls (p<10(-7)). The disulf…
Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management
Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients' cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mi…
Oxidative stress biomarkers in four Bloom syndrome (BS) patients and in their parents suggest in vivo redox abnormalities in BS phenotype.
Objective: To evaluate an association of Bloom syndrome (BS) phenotype with an in vivo prooxidant state. Methods: The following endpoints were measured in 4 BS patients, their 6 parents, and 78 controls: a) leukocyte and urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG); b) blood glutathione (GSSG and GSH), c) plasma levels of some plasma antioxidants (uric acid, UA, ascorbic acid, AA, α- and γ-tocopherol), and of glyoxal (Glx) and methylglyoxal (MGlx). Results: Leukocyte 8-OHdG levels were significantly increased in the 4 BS patients vs. 40 controls (p = 0.04), while the urinary 8-OHdG levels were non-significantly increased in BS patients. Glutathione disulfide levels and GSSG/GSH ratio were s…
Bone marrow cell transcripts from Fanconi anaemia patients revealin vivoalterations in mitochondrial, redox and DNA repair pathways
Fanconi anaemia (FA) is a genetic cancer predisposition disorder associated with cytogenetic instability, bone marrow failure and a pleiotropic cellular phenotype, including low thresholds of responses to oxidative stress, cross-linking agents and selected cytokines. This study was aimed at defining the scope of abnormalities in gene expression using the publicly available FA Transcriptome Consortium (FTC) database (Gene Expression Omnibus, 2009 and publicly available as GSE16334). We evaluated the data set that included transcriptomal analyses on RNA obtained from low-density bone marrow cells (BMC) from 20 patients with FA and 11 healthy volunteers, by seeking to identify changes in expre…
Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies
Friedreichs Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated prooxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other st…
Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as alpha-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and L-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The…
From clinical description, to in vitro and animal studies, and backward to patients: Oxidative stress and mitochondrial dysfunction in Fanconi anemia
Fanconi anemia (FA) is a rare genetic disease associated with deficiencies in DNA repair pathways. A body of literature points to a pro-oxidant state in FA patients, along with evidence for oxidative stress (OS) in the FA phenotype reported by in vitro, molecular, and animal studies. A highlight arises from the detection of mitochondrial dysfunction (MDF) in FA cell lines of complementation groups A, C, D2, and G. As yet lacking, in vivo studies should focus on FA-associated MDF, which may help in the understanding of the mitochondrial basis of OS detected in cells and body fluids from FA patients. Beyond the in vitro and animal databases, the available analytical devices may prompt the dir…
Sonographic monitoring of pelvic organs during pubertal maturation in girls treated for childhood acute leukemia
Abstract Study Objective: To describe pubertal maturation of pelvic organs in long-term female survivors of acute childhood leukemia. Design: A case-control study comparing the uterine and ovarian biometry and the ovarian ultrasonographic patterns. Data were ordered according to age and Tanner staging. Setting: Department of Pediatrics, University of Palermo, Italy. Participants: Department of Obstetrics and Gynecology, Department of Pediatrics, University of Palermo, Italy. Subjects: 11 long-term pubertal female survivors of acute childhood leukemia. 53 healthy pubertal schoolgirls as control group. Interventions: Assessment of pubertal development by Tanner staging and by recording age at…
Fanconi anemia (FA) and crosslinker sensitivity: Re-appraising the origins of FA definition
The commonly accepted definition of Fanconi anemia (FA) relying on DNA repair deficiency is submitted to a critical review starting from the early reports pointing to mitomycin C bioactivation and to the toxicity mechanisms of diepoxybutane and a group of nitrogen mustards causing DNA crosslinks in FA cells. A critical analysis of the literature prompts revisiting the FA phenotype and crosslinker sensitivity in terms of an oxidative stress (OS) background, redox-related anomalies of FA (FANC) proteins, and mitochondrial dysfunction. This re-appraisal of FA basic defect might lead to innovative approaches both in elucidating FA phenotypes and in clinical management.
Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction
Oxidative stress (OS) and mitochondrial dysfunction (MDF) occur in a number of disorders, and several clinical studies have attempted to counteract OS and MDF by providing adjuvant treatments against disease progression. The present review is aimed at focusing on two apparently distant diseases, namely type 2 diabetes (T2D) and a rare genetic disease, Fanconi anemia (FA). The pathogenetic links between T2D and FA include the high T2D prevalence among FA patients and the recognized evidence for OS and MDF in both disorders. This latter phenotypic/pathogenetic feature—namely MDF—may be regarded as a mechanistic ground both accounting for the clinical outcomes in both diseases, and…
Oxidative stress in Fanconi anaemia: from cells and molecules towards prospects in clinical management.
Abstract Fanconi anaemia (FA) is a genetic disease featuring bone marrow failure, proneness to malignancies, and chromosomal instability. A line of studies has related FA to oxidative stress (OS). This review attempts to evaluate the evidence for FA-associated redox abnormalities in the literature from 1981 to 2010. Among 2170 journal articles on FA evaluated, 162 related FA with OS. Early studies reported excess oxygen toxicity in FA cells that accumulated oxidative DNA damage. Prooxidant states were found in white blood cells and body fluids from FA patients as excess luminol-dependent chemiluminescence, 8-hydroxy-deoxyguanosine, reduced glutathione/oxidized glutathione imbalance, and tum…
Sjøgren's syndrome-associated oxidative stress and mitochondrial dysfunction: Prospects for chemoprevention trials
An involvement of oxidative stress (OS) was found in recent studies of Sjøgren's syndrome (SS) that reported significant changes in protein oxidation, myeloperoxidase activity, TNF-α, nitrotyrosine, and GSH levels in plasma from SS patients. Excess levels of OS markers, as oxidative DNA damage and propanoyl-lysine, were reported in saliva from SS patients. Previous reports concurred with a role of OS in SS pathogenesis, by showing a decreased expression of antioxidant activities in conjunctival epithelial cells of SS patients and in parotid gland tissue samples from SS patients. A link between OS and mitochondrial dysfunction (MDF) is recognized both on the grounds of the established role o…