Spatial autocorrelation and the selection of simultaneous autoregressive models
Aim Spatial autocorrelation is a frequent phenomenon in ecological data and can affect estimates of model coefficients and inference from statistical models. Here, we test the performance of three different simultaneous autoregressive (SAR) model types (spatial error = SAR err , lagged = SAR lag and mixed = SAR mix ) and common ordinary least squares (OLS) regression when accounting for spatial autocorrelation in species distribution data using four artificial data sets with known (but different) spatial autocorrelation structures. Methods We evaluate the performance of SAR models by examining spatial patterns in model residuals (with correlograms and residual maps), by comparing model para…