0000000000416761

AUTHOR

M. Kraemer

Infinite momentum frame calculation of semileptonic heavyΛb→Λctransitions including HQET improvements

We calculate the transition form factors that occur in heavy {Lambda}-type baryon semileptonic decays such as, e.g., in {Lambda}{sub b}{r_arrow}{Lambda}{sub c}{sup +}+l{sup {minus}}+{bar {nu}}{sub l}. We use Bauer-Stech-Wirbel-type infinite momentum frame wave functions for the heavy {Lambda}-type baryons which we assume to consist of a heavy quark and a light spin-isospin zero diquark system. The form factors at q{sup 2}=0 are calculated from the overlap integrals of the initial and final {Lambda}-type baryon states. To leading order in the heavy mass scale the structure of the form factors agrees with the HQET predictions including the normalization at zero recoil. The leading order {omeg…

research product

Transverse extension of partons in the proton probed in the sea-quark range by measuring the DVCS cross section

Physics letters / B B793, 188-194 (2019). doi:10.1016/j.physletb.2019.04.038

research product

First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process

The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $\pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic sc…

research product

Measurements of atmospheric condensation nuclei size distributions in Siberia

Abstract The least investigated atmospheric aerosol is the one in remote continental areas. In this study, measurements of condensation nuclei size distributions near Lake Baikal, Siberia, were performed. Data for total aerosol number concentration and aerosol size distribution were obtained. The measurement equipment consisted of a TSI screen diffusion battery (SDB) Model 3040 and a TSI condensational nuclei counter (CNC) Model 3020. The average aerosol number concentration was about 104 cm−3. The evolution of aerosol number concentration during the day is correlated with the solar radiation. The inversion problem was solved using Tihonov's regularisation procedure. The possibility of appl…

research product

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are pres…

research product

Measurement of the Charged-Pion Polarizability

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^-\gamma\rightarrow \pi^-\gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}$, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2<0.0015$\,(GeV/$c$)$^2$. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3$ under the …

research product