Compact and Weakly Compact Homomorphisms on Fréchet Algebras of Holomorphic Functions
We study homomorphisms between Frechet algebras of holomorphic functions of bounded type. In this setting we prove that any pointwise bounded homomorphism into the space of entire functions of bounded type is rank one. We characterize up to the approximation property of the underlying Banach space, the weakly compact composition operators on Hb(V), V absolutely convex open set.