0000000000416819

AUTHOR

Petr Navrátil

showing 5 related works from this author

Examining the N=28 shell closure through high-precision mass measurements of Ar46–48

2020

The strength of the $N=28$ magic number in neutron-rich argon isotopes is examined through high-precision mass measurements of $^{46\text{--}48}\mathrm{Ar}$, performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN. The new mass values are up to 90 times more precise than previous measurements. While they suggest the persistence of the $N=28$ shell closure for argon, we show that this conclusion has to be nuanced in light of the wealth of spectroscopic data and theoretical investigations performed with the SDPF-U phenomenological shell model interaction. Our results are also compared with ab initio calculations using the valence space in-medium similarity renormalization group and the s…

PhysicsArgonValence (chemistry)010308 nuclear & particles physicsSHELL modelchemistry.chemical_elementIsotopes of argonRenormalization groupMass spectrometry01 natural sciencesISOLTRAPchemistryAb initio quantum chemistry methods0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physicsPhysical Review C
researchProduct

Computational nuclear quantum many-body problem: The UNEDF project

2013

The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF scien…

Energy density functionalNuclear Theoryta114Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyComputerApplications_COMPUTERSINOTHERSYSTEMSSupercomputerNuclear Theory (nucl-th)Many-body problemRange (mathematics)Hardware and ArchitectureSystems engineeringStatistical physicsUncertainty quantificationQuantumNuclear theoryComputer Physics Communications
researchProduct

Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

2018

A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…

Materials scienceNuclear Theorynucl-thNuclear TheoryAb initioGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometrynucl-ex01 natural sciencesNuclear Theory (nucl-th)symbols.namesake0103 physical sciencesPhysics::Atomic and Molecular ClustersNeutron[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentIsotope010308 nuclear & particles physicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumPenning trapchemistry13. Climate actionsymbolsIon trapAtomic physicsTitan (rocket family)Titanium
researchProduct

Nonquenched Isoscalar Spin-M1Excitations insd-Shell Nuclei

2015

Differential cross sections of isoscalar and isovector spin-M1 (0(+)→1(+)) transitions are measured using high-energy-resolution proton inelastic scattering at E(p)=295  MeV on (24)Mg, (28)Si, (32)S, and (36)Ar at 0°-14°. The squared spin-M1 nuclear transition matrix elements are deduced from the measured differential cross sections by applying empirically determined unit cross sections based on the assumption of isospin symmetry. The ratios of the squared nuclear matrix elements accumulated up to E(x)=16  MeV compared to a shell-model prediction are 1.01(9) for isoscalar and 0.61(6) for isovector spin-M1 transitions, respectively. Thus, no quenching is observed for isoscalar spin-M1 transi…

PhysicsMatrix (mathematics)IsovectorProtonIsospinIsoscalarNuclear TheoryStochastic matrixGeneral Physics and AstronomyInelastic scatteringAtomic physicsNuclear ExperimentSpin (physics)Physical Review Letters
researchProduct

Precise branching ratios to unbound 12C states from 12N and 12B β-decays

2009

6 pages, 2 tables, 4 figures.--PACS nrs.: 21.45.-v; 23.40.-s; 27.20.+n; 21.60.De.--Printed version published Aug 3, 2009

branching ratiosPhysicsNuclear and High Energy PhysicsChiral perturbation theory[PACS] β decayBranching fractionNuclear shell model[PACS] Ab initio methods[PACS] β decay; double β decay; electron and muon captureAlpha particleFew-body systems[PACS] Few-body systemselectron and muon capturedouble β decay6 ≤ A ≤ 19 [[PACS] Properties of specific nuclei listed by mass ranges]Double beta decayExcited stateAtomic physics[PACS] Properties of specific nuclei listed by mass ranges: 6 ≤ A ≤ 19Nucleonbeta-decayC12
researchProduct