0000000000417049

AUTHOR

Adrian Dorado

Display of travelling 3D scenes from single integral-imaging capture

Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.

research product

Non-Homogeneity of Lateral Resolution in Integral Imaging

We evaluate the lateral resolution in reconstructed integral images. Our analysis takes into account both the diffraction effects in the image capture stage and the lack of homogeneity and isotropy in the reconstruction stage. We have used Monte Carlo simulation in order to assign a value for the resolution limit to any reconstruction plane. We have modelled the resolution behavior. Although in general the resolution limit increases proportionally to the distance to the lens array, there are some periodically distributed singularity planes. The phenomenon is supported by experiments.

research product

Full-parallax 3D display from the hole-filtered depth information

In this paper we introduce an efficient hole-filling algorithm for synthetic generation of microimages that are displayed on an integral imaging monitor. We apply the joint bilateral filter and the median filter to the captured depth map. We introduce in any step of the iterative algorithm with the data from a new Kinect capture. As a result, this algorithm can improve the quality of the depth maps and remove unmeasured depth holes effectively. This refined depth information enables to create a tidy integral image, which can be projected into an integral imaging monitor. In this way the monitor can display 3D images with continuous views, full parallax and abundant 3D reconstructed scene fo…

research product

Algorithms for transforming an integral photography into a plenoptic picture

We report a simple algorithm for transforming the set of elemental images captured with an integral-photography set up, into the set of micro-images ready to be projected into an integral-imaging monitor. The method is based in the transposing relation between an integral photography and a plenoptic picture. The reported technique permits to adapt the integral images to the resolution and size of the monitor.

research product

Elemental images for integral-imaging display

One of the differences between the near-field integral imaging (NInI) and the far-field integral imaging (FInI), is the ratio between number of elemental images and number of pixels per elemental image. While in NInI the 3D information is codified in a small number of elemental images (with many pixels each), in FInI the information is codified in many elemental images (with only a few pixels each). The later codification is similar that the one needed for projecting the InI field onto a pixelated display when aimed to build an InI monitor. For this reason, the FInI cameras are specially adapted for capturing the InI field with display purposes. In this contribution we research the relation…

research product

Integral Imaging Monitors with an Enlarged Viewing Angle

Enlarging the horizontal viewing angle is an important feature of integral imaging monitors. Thus far, the horizontal viewing angle has been enlarged in different ways, such as by changing the size of the elemental images or by tilting the lens array in the capture and reconstruction stages. However, these methods are limited by the microlenses used in the capture stage and by the fact that the images obtained cannot be easily projected into different displays. In this study, we upgrade our previously reported method, called SPOC 2.0. In particular, our new approach, which can be called SPOC 2.1, enlarges the viewing angle by increasing the density of the elemental images in the horizontal …

research product

Three-Dimensional Integral-Imaging Display From Calibrated and Depth-Hole Filtered Kinect Information

We exploit the Kinect capacity of picking up a dense depth map, to display static three-dimensional (3D) images with full parallax. This is done by using the IR and RGB camera of the Kinect. From the depth map and RGB information, we are able to obtain an integral image after projecting the information through a virtual pinhole array. The integral image is displayed on our integral-imaging monitor, which provides the observer with horizontal and vertical perspectives of big 3D scenes. But, due to the Kinect depth-acquisition procedure, many depthless regions appear in the captured depth map. These holes spread to the generated integral image, reducing its quality. To solve this drawback we …

research product

Computation of microimages for plenoptic display

We report a new algorithm for the generation of the microimages ready for their projection into an integral imaging monitor. The algorithm is based in the transformation properties of the plenoptic field captured with an array of digital cameras. We show that a small number of cameras can produce the microimages for displaying 3D scenes with resolution and parallax fully adapted to the monitor features.

research product

Plenoptic image watermarking to preserve copyright

Common camera loses a huge amount of information obtainable from scene as it does not record the value of individual rays passing a point and it merely keeps the summation of intensities of all the rays passing a point. Plenoptic images can be exploited to provide a 3D representation of the scene and watermarking such images can be helpful to protect the ownership of these images. In this paper we propose a method for watermarking the plenoptic images to achieve this aim. The performance of the proposed method is validated by experimental results and a compromise is held between imperceptibility and robustness.

research product

Three-Dimensional Imaging and Display through Integral Photography

Here, we present a review of the proposals and advances in the field of three-dimensional (3D) imaging acquisition and display made in the last century. The most popular techniques are based on the concept of stereoscopy. However, stereoscopy does not provide real 3D experience, and produces discomfort due to the conflict between convergence and accommodation. For this reason, we focus this paper on integral imaging, which is a technique that permits the codification of 3D information in an array of 2D images obtained from different perspectives. When this array of elemental images is placed in front of an array of microlenses, the perspectives are integrated producing 3D images with full p…

research product

Recent Advances in the Capture and Display of Macroscopic and Microscopic 3-D Scenes by Integral Imaging

The capture and display of images of 3-D scenes under incoherent and polychromatic illumination is currently a hot topic of research, due to its broad applications in bioimaging, industrial procedures, military and surveillance, and even in the entertainment industry. In this context, Integral Imaging (InI) is a very competitive technology due to its capacity for recording with a single exposure the spatial-angular information of light-rays emitted by the 3-D scene. From this information, it is possible to calculate and display a collection of horizontal and vertical perspectives with high depth of field. It is also possible to calculate the irradiance of the original scene at different dep…

research product

Towards 3D Television Through Fusion of Kinect and Integral-Imaging Concepts

We report a new procedure for the capture and processing of light proceeding from 3D scenes of some cubic meters in size. Specifically we demonstrate that with the information provided by a kinect device it is possible to generate an array of microimages ready for their projection onto an integral-imaging monitor. We illustrate our proposal with some imaging experiment in which the final result are 3D images displayed with full parallax.

research product

Computation and Display of 3D Movie From a Single Integral Photography

Integral photography is an auto-stereoscopic technique that allows, among other interesting applications, the display of 3D images with full parallax and avoids the painful effects of the accommodation-convergence conflict. Currently, one of the main drawbacks of this technology is the need of a huge amount of data, which have to be stored and transmitted. This is due to the fact that behind every visual resolution unit, i.e. behind any microlens of an integral-photography monitor, between 100 and 300 pixels should appear. In this paper, we make use of an updated version of our algorithm, SPOC 2.0, to alleviate this situation. We propose the application of SPOC 2.0 for the calculation of co…

research product

Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus.

The original aim of the integral-imaging concept, reported by Gabriel Lippmann more than a century ago, is the capture of images of 3D scenes for their projection onto an autostereoscopic display. In this paper we report a new algorithm for the efficient generation of microimages for their direct projection onto an integral-imaging monitor. Like our previous algorithm, the smart pseudoscopic-to-orthoscopic conversion (SPOC) algorithm, this algorithm produces microimages ready to produce 3D display with full parallax. However, this new algorithm is much simpler than the previous one, produces microimages free of black pixels, and permits fixing at will, between certain limits, the reference …

research product

Integral display for non-static observers

We propose to combine the Kinect and the Integral-Imaging technologies for the implementation of Integral Display. The Kinect device permits the determination, in real time, of (x,y,z) position of the observer relative to the monitor. Due to the active condition of its IR technology, the Kinect provides the observer position even in dark environments. On the other hand, SPOC 2.0 algorithm permits to calculate microimages adapted to the observer 3D position. The smart combination of these two concepts permits the implementation, for the first time we believe, of an Integral Display that provides the observer with color 3D images of real scenes that are viewed with full parallax and which are…

research product

Lightfield recording and reconstruction by integral imaging

Integral imaging is a rising 3D imaging technique that can be considered the incoherent version of holography. In integral imaging the multiperspective information of 3D scenes is stored in a 2D picture. Such picture is nothing but a sampling version of the lightfield emitted by the 3D scene. The recorded lightfield can be used for many purposes. One is the display of 3D color scenes to audiences or much more than one person. Other is the 3D display, with full parallax, in personal monitors, like the screen of a Smartphone, a tablet, or the monitor used by a surgeon in an endoscopic operation. Other important types of applications are connected with the topographic reconstruction, slice by …

research product

Toward 3D integral-imaging broadcast with increased viewing angle and parallax

Abstract We propose a new method for improving the observer experience when using an integral monitor. Our method permits to increase the viewing angle of the integral monitor, and also the maximum parallax that can be displayed. Additionally, it is possible to decide which parts of the 3D scene are displayed in front or behind the monitor. Our method is based, first, in the direct capture, with significant excess of parallax, of elemental images of 3D real scenes. From them, a collection of microimages adapted to the observer lateral and depth position is calculated. Finally, an eye-tracking system permits to determine the 3D observer position, and therefore to display the adequate microim…

research product