0000000000417073

AUTHOR

Karl Giboni

showing 7 related works from this author

Erratum: Study of the electromagnetic background in the XENON100 experiment [Phys. Rev. D 83, 082001 (2011)]

2012

Nuclear physicsPhysicsNuclear and High Energy PhysicsDark matterParticle detectorPhysical Review D
researchProduct

The neutron background of the XENON100 dark matter search experiment

2013

TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENO…

Nuclear and High Energy PhysicsParticle physicsLarge Underground Xenon experimentPhysics::Instrumentation and DetectorsDark matterGeant4Astrophysics::Cosmology and Extragalactic AstrophysicsWIMP Argon Programme01 natural sciencesNuclear physicsWIMPNuclear and High Energy Physics Neutron Background Dark Matter Search XENON TPC0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSSpontaneous fissionPhysicsElastic scatteringFluxMuons010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsWeakly interacting massive particlesHigh Energy Physics::ExperimentSimulation
researchProduct

Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data

2013

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129-Xe and 131-Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV, with a minimum cross section of 3.5 x 10^{-40} cm^2 at a WIMP mass of 45 GeV, at 90% confidence level.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Dark matterGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesdark matterParticle detectorHigh Energy Physics - ExperimentNuclear physicsCross section (physics)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Spin-½Physics010308 nuclear & particles physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics - Instrumentation and Methods for AstrophysicsNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Implications on inelastic dark matter from 100 live days of XENON100 data

2011

The XENON100 experiment has recently completed a dark matter run with 100.9 live-days of data, taken from January to June 2010. Events in a 48kg fiducial volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A total of three events have been found in the predefined signal region, compatible with the background prediction of (1.8 \pm 0.6) events. Based on this analysis we present limits on the WIMP-nucleon cross section for inelastic dark matter. With the present data we are able to rule out the explanation for the observed DAMA/LIBRA modulation as being due to inelastic dark matter scattering off iodine at a 90% confidence level.

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsScatteringDARK MATTERSignal regionDark matterFOS: Physical sciences01 natural sciencesWIMPSNuclear physicsXENON0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TPC010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Erratum: Search for Light Dark Matter in XENON10 Data [Phys. Rev. Lett.107, 051301 (2011)]

2013

PhysicsDark matterGeneral Physics and AstronomyAstrophysicsLight dark matterParticle detectorPhysical Review Letters
researchProduct

A search for light dark matter in XENON10 data

2011

We report results of a search for light (3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)LightDark matterGeneral Physics and AstronomyFOS: Physical sciencesElectronsElementary particleElectron01 natural sciencesParticle detectorHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHumansScattering Radiation010306 general physicsLight dark matterNuclear PhysicsPhysicsPhotons010308 nuclear & particles physicsScatteringFermionBaryonHigh Energy Physics - PhenomenologyData Interpretation StatisticalCosmic RadiationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Analysis of the XENON100 dark matter search data

2014

The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.

Large Underground Xenon experimentPhysics - Instrumentation and DetectorsXenonWIMPPhysics::Instrumentation and DetectorsDirect detectionDark matterchemistry.chemical_elementFOS: Physical sciencesDarkSideWIMP Argon ProgrammeNuclear physicsXenonDark matterStatistical analysisNuclear ExperimentInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)WIMPschemistryWeakly interacting massive particlesDark matter; Direct detection; WIMPs; XenonAstrophysics - Instrumentation and Methods for AstrophysicsAstroparticle Physics
researchProduct