0000000000417077

AUTHOR

Line Nybakken

showing 3 related works from this author

Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens

2011

Accepted version of an article published in the journal: Environmental and Experimental Botany. Published version available on Science Direct: http://dx.doi.org/10.1016/j.envexpbot.2011.04.011 Global warming is expected to change plant defence through its influence on plant primary resources. Increased temperature (T) will increase photosynthesis, and thus carbon (C) availability, but may also increase soil mineralization and availability of nitrogen (N). More access to C and N is expected to mainly increase plant growth, and, according to hypotheses on resource based defence, this could lower plant concentrations of carbon-based secondary compounds (CBSCs). We used two already established …

VDP::Mathematics and natural science: 400::Zoology and botany: 480::Ecology: 488VDP::Mathematics and natural science: 400::Zoology and botany: 480::Plant physiology: 492
researchProduct

Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in …

2019

Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Bettda pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Pagus sylvatica, Acer platanoides, Betula pendula). Co…

0106 biological sciences0301 basic medicineCanopyUltraviolet RaysPhysiologyUV-B RADIATIONPlant ScienceForestsANTHOCYANINS01 natural sciencesUV radiationBOREAL FOREST03 medical and health scienceschemistry.chemical_compoundFagus sylvaticaPhotodegradationGeneticsPhotodegradationEcosystemFinlandComputingMilieux_MISCELLANEOUS11832 Microbiology and virologyFlavonoidsSunlight[SDV.EE]Life Sciences [q-bio]/Ecology environment4112 ForestryPhotolysisbiologyChemistryTEMPERATEPLANT LITTERPicea abies15. Life on landPlant litterbiology.organism_classificationPhenolic compoundsUnderstorey light environmentSODANKYLAPlant LeavesHorticultureLIGHT030104 developmental biology13. Climate actionBetula pendulaChlorophyllPATTERNS1182 Biochemistry cell and molecular biologyLEAF-LITTER DECOMPOSITION010606 plant biology & botany
researchProduct

Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens

2011

Accepted version of an article published in the journal: Environmental and Experimental Botany. Published version available on Science Direct: http://dx.doi.org/10.1016/j.envexpbot.2011.04.011

chemistryEcologyEnvironmental chemistrychemistry.chemical_elementPlant ScienceBiologyLichenAgronomy and Crop ScienceCarbonNitrogenEcology Evolution Behavior and SystematicsEnvironmental and Experimental Botany
researchProduct