0000000000417249

AUTHOR

Carsten Montzka

showing 4 related works from this author

Validation of SMAP surface soil moisture products with core validation sites

2017

Abstract The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations. The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distributio…

010504 meteorology & atmospheric sciencesMean squared error0211 other engineering and technologiesSoil Science02 engineering and technology01 natural scienceslaw.inventionlawValidationCalibrationComputers in Earth SciencesRadarSpatial domainWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerPixelGeologySMAP22/4 OA procedureITC-ISI-JOURNAL-ARTICLEEnvironmental scienceSatelliteSoil moisture
researchProduct

Relationship between vegetation microwave optical depth and cross-polarized backscatter from multiyear Aquarius observations

2017

Soil moisture retrieval algorithms based on passive microwave remote sensing observations need to account for vegetation attenuation and emission, which is generally parameterized as vegetation optical depth (VOD). This multisensor study tests a new method to retrieve VOD from cross-polarized radar backscattering coefficients. Three years of Aquarius/SAC-D data were used to establish a relationship between the cross-polarized backscattering coefficient σ HV and VOD derived from a multitemporal passive dual-channel algorithm (VODMT). The dependence of the correspondence is analyzed for different land use classes. There are no systematic differences in the slope for woody versus nonwoody vege…

Synthetic aperture radarAtmospheric ScienceTeledetecció010504 meteorology & atmospheric sciencesBackscatter0211 other engineering and technologiesOptical polarization02 engineering and technologyVegetationLand cover01 natural scienceslaw.inventionPhysics::GeophysicslawSpatial ecologyEnvironmental scienceVegetacióComputers in Earth SciencesRadarOptical depth021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Estimation of Vegetation Structure Parameters From SMAP Radar Intensity Observations

2021

In this article, we present a multipolarimetric estimation approach for two model-based vegetation structure parameters (shape A and orientation distribution ψ of the main canopy elements). The approach is based on a reduced observation set of three incoherent (no phase information) polarimetric backscatter intensities (|S HH | 2 , |S HV | 2 , and |S VV | 2 ) combined with a two-parameter (A P and ψ) discrete scatterer model of vegetation. The objective is to understand whether this confined set of observations contains enough information to estimate the two vegetation structure parameters from the L-band radar signals. In order to disentangle soil and vegetation scattering influences on th…

Backscatter:Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Radar [Àrees temàtiques de la UPC]Incoherent scatterSynthetic aperture radarGeometryvegetation modelPhysics::GeophysicsBackscatterScatteringPolarimetryddc:550vegetation structureVegetacióDiscrete scattererElectrical and Electronic EngineeringpolarimetryVegetation mappingPhysicsRadarScatteringscatteringShapeOrder (ring theory)PlantsOrientation (vector space)DipoleVegetation structureDistribution (mathematics)Soil Moisture Active Passive (SMAP)Vegetation modelGeneral Earth and Planetary SciencesEstimationIntensity (heat transfer)radarIEEE Transactions on Geoscience and Remote Sensing
researchProduct

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct