0000000000417328
AUTHOR
Jan J. Sniatecki
Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles
To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles.Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor-deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy.Only mRNA for the M(3) receptor was detected in retinal arterioles. Thus, M(3) receptor-deficient mice (M3R(-/-)) and respective wild-type controls …
Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles.
Abstract Nitric oxide synthases (NOSs) are critically involved in regulation of ocular perfusion. However, the contribution of the individual NOS isoforms to vascular responses is unknown in the retina. Because some previous findings suggested an involvement of inducible nitric oxide synthase (iNOS) in the regulation of retinal vascular tone, a major goal of the present study was to examine the hypothesis that iNOS is involved in mediating cholinergic vasodilation responses of murine retinal arterioles. Another subject of this study was to test the contribution of the other two NOS isoforms, neuronal (nNOS) and endothelial NOS (eNOS), to cholinergic retinal arteriole responses. Expression o…
Role of nitric oxide synthase isoforms for ophthalmic artery reactivity in mice.
Abstract Nitric oxide synthases (NOS) are involved in regulation of ocular vascular tone and blood flow. While endothelial NOS (eNOS) has recently been shown to mediate endothelium-dependent vasodilation in mouse retinal arterioles, the contribution of individual NOS isoforms to vascular responses is unknown in the retrobulbar vasculature. Moreover, it is unknown whether the lack of a single NOS isoform affects neuron survival in the retina. Thus, the goal of the present study was to examine the hypothesis that the lack of individual nitric oxide synthase (NOS) isoforms affects the reactivity of mouse ophthalmic arteries and neuron density in the retinal ganglion cell (RGC) layer. Mice defi…
Role of M1, M3, and M5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice
Acetylcholine regulates perfusion of numerous organs via changes in local blood flow involving muscarinic receptor-induced release of vasorelaxing agents from the endothelium. The purpose of the present study was to determine the role of M1, M3, and M5 muscarinic acetylcholine receptors in vasodilation of small arteries using gene-targeted mice deficient in either of the three receptor subtypes (M1R−/−, M3R−/−, or M5R−/− mice, respectively). Muscarinic receptor gene expression was determined in murine cutaneous, skeletal muscle, and renal interlobar arteries using real-time PCR. Moreover, respective arteries from M1R−/−, M3R−/−, M5R−/−, and wild-type mice were isolated, cannulated with mic…