0000000000417461

AUTHOR

Slavko Bogdanov

0000-0002-9870-2742

Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…

research product

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

research product

Dense matter with eXTP

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

research product