0000000000417484

AUTHOR

Nahuel A. García

showing 3 related works from this author

Molecular disturbance underlies to arrhythmogenic cardiomyopathy induced by transgene content, age and exercise in a truncated PKP2 mouse model

2016

13 páginas, 9 tablas, 2 figuras. Contiene material suplementario.

0301 basic medicineGenetically modified mouseAgingmedicine.medical_specialtyTransgeneCardiomyopathyPlakoglobinConnexin030204 cardiovascular system & hematologyBiologyMice03 medical and health sciences0302 clinical medicineFibrosisInternal medicineGeneticsmedicineAnimalsHumansTransgenesMolecular BiologyArrhythmogenic Right Ventricular DysplasiaGenetics (clinical)General Medicinemedicine.diseasePhenotypeDisease Models Animal030104 developmental biologyEndocrinologyMutationDisease ProgressionPhysical EnduranceDesminPlakophilins
researchProduct

Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.

2018

Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-epsilon-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Impl…

0301 basic medicineKeratinocytesMaleBiocompatibilityAngiogenesisPolymersBiomedical EngineeringMedicine (miscellaneous)HydroxybutyratesNeovascularization PhysiologicHuman skinhuman skin xenograftBiocompatible Materials02 engineering and technologyNodMice SCIDpoly(hydroxybutyrate)Biomaterials03 medical and health sciencesIn vivoMice Inbred NODProhibitinsHuman Umbilical Vein Endothelial CellsAnimalsHumansRats WistarelectrospinningCell ProliferationSkin ArtificialTissue EngineeringTissue ScaffoldsChemistryMacrophagestechnology industry and agricultureCell PolarityCell DifferentiationM2 polarizationDermisSkin Transplantation021001 nanoscience & nanotechnologyM2 MacrophageIn vitro030104 developmental biologyskin equivalentsEpidermis0210 nano-technologyBiomedical engineeringJournal of tissue engineering and regenerative medicine
researchProduct

Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36

2019

Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circu…

0301 basic medicineCD36 AntigensMaleLuminescenceCD36Mice SCIDFatty Acids NonesterifiedExosomesBiochemistryFatsMiceSpectrum Analysis TechniquesAnimal CellsMice Inbred NODMedicine and Health SciencesMyocytes CardiacTissue homeostasischemistry.chemical_classificationCardiomyocytesMultidisciplinarybiologymedicine.diagnostic_testPhysicsElectromagnetic RadiationQFatty AcidsRHeartFlow CytometryLipidsCell biologyBlotSpectrophotometryPhysical SciencesMedicinelipids (amino acids peptides and proteins)FemaleCytophotometryCellular Structures and OrganellesAnatomyCellular TypesResearch ArticleAdultScienceMuscle TissueResearch and Analysis MethodsFluorescenceFlow cytometryCell Line03 medical and health sciencesIn vivomedicineDiabetes MellitusAnimalsHumansVesiclesObesityRats WistarMuscle Cells030102 biochemistry & molecular biologyFatty acidBiology and Life SciencesCell BiologyAtherosclerosisMicrovesiclesDisease Models Animal030104 developmental biologyBiological Tissuechemistrybiology.proteinCardiovascular AnatomyEx vivoPLoS ONE
researchProduct