6533b860fe1ef96bd12c2f6f

RESEARCH PRODUCT

Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36

Rafael S. SánchezPeter J. SimonsAase HandbergNahuel A. GarcíaJosé-enrique O'connorHernán González-kingBeatriz JávegaPilar SepúlvedaAlicia Martínez-romeroE. Grueso

subject

0301 basic medicineCD36 AntigensMaleLuminescenceCD36Mice SCIDFatty Acids NonesterifiedExosomesBiochemistryFatsMiceSpectrum Analysis TechniquesAnimal CellsMice Inbred NODMedicine and Health SciencesMyocytes CardiacTissue homeostasischemistry.chemical_classificationCardiomyocytesMultidisciplinarybiologymedicine.diagnostic_testPhysicsElectromagnetic RadiationQFatty AcidsRHeartFlow CytometryLipidsCell biologyBlotSpectrophotometryPhysical SciencesMedicinelipids (amino acids peptides and proteins)FemaleCytophotometryCellular Structures and OrganellesAnatomyCellular TypesResearch ArticleAdultScienceMuscle TissueResearch and Analysis MethodsFluorescenceFlow cytometryCell Line03 medical and health sciencesIn vivomedicineDiabetes MellitusAnimalsHumansVesiclesObesityRats WistarMuscle Cells030102 biochemistry & molecular biologyFatty acidBiology and Life SciencesCell BiologyAtherosclerosisMicrovesiclesDisease Models Animal030104 developmental biologyBiological Tissuechemistrybiology.proteinCardiovascular AnatomyEx vivo

description

Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circulating exosomes showed that CD36 was expressed under both states, but was higher in postprandial-derived exosomes. Flow cytometry analysis showed that circulating exosomes were able to take-up FFA directly from serum. Importantly, preincubation of exosomes with a blocking CD36 antibody significantly impeded uptake of the FFA analogue BODIPY, pointing to the role of CD36 in FFA exosomal uptake. Finally, we found that circulating exosomes could delivery FFA analogue BODIPY into cardiac cells ex vivo and in vivo in a mice model. Overall, our results suggest a novel mechanism in which circulating exosomes can delivery FFAs from the bloodstream to cardiac tissue. Further studies will be necessary to understand this mechanism and, in particular, its potential involvement in metabolic pathologies such as obesity, diabetes and atherosclerosis.

10.1371/journal.pone.0217546http://europepmc.org/articles/PMC6541372