0000000000417602

AUTHOR

Silke Gandor

showing 1 related works from this author

A Protein-Interaction Array Inside a Living Cell

2013

Cell phenotype is determined by protein network states that are maintained by the dynamics of multiple protein interactions.1 Fluorescence microscopy approaches that measure protein interactions in individual cells, such as by Forster resonant energy transfer (FRET), are limited by the spectral separation of fluorophores and thus are most suitable to analyze a single protein interaction in a given cell. However, analysis of correlations between multiple protein interactions is required to uncover the interdependence of protein reactions in dynamic signal networks. Available protein-array technologies enable the parallel analysis of interacting proteins from cell extracts, however, they can …

ImmunoprecipitationRecombinant Fusion Proteinsprotein-protein interactionsImmobilized Nucleic AcidsProtein Array AnalysisreceptorsDNA Single-StrandedCatalysisProtein–protein interactionReceptors G-Protein-CoupledBimolecular fluorescence complementationProtein Array AnalysisChlorocebus aethiopsFluorescence microscopeFluorescence Resonance Energy TransferAnimalsProtein Interaction MapsProtein kinase Amultiplexed assayChemistryProteinsProtein-protein interactions Dip Pen Nanolithography Protein KinaseDNA directed immobilizationGeneral MedicineGeneral ChemistryCommunicationssurface-immobilizationKineticsLuminescent ProteinsFörster resonance energy transferBiochemistryMicroscopy FluorescenceCOS CellsBiophysicsSignal transductionAntibodies Immobilizedsignal transduction
researchProduct