Lattice Calculation of the Decay of Primordial Higgs Condensate
We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into $SU(2)$ gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale $H = 10^8$ GeV, we find that 90% of the Higgs condensate has decayed after $n \sim 10$ oscillation cycles. This differs significantly from the Abelian case where, given the same coupling strengths, most of the condensate would persist after the resonance.
Detecting gravitational waves from cosmological phase transitions with LISA: an update
MC was funded by the Royal Society under the Newton International Fellowship program. GD would like to thank CNPq (Brazil) for financial support. MH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1), and the Academy of Finland (grant number 286769). SJH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1). The work of JK was supported by Department of Energy (DOE) grant DE-SC0019195 and NSF grant PHY-1719642. TK and GS are funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 \Quantum Universe" - 390833306. JMN is supported by Ramon y Cajal Fellowship contract RYC-2017-22986…