0000000000417618

AUTHOR

David J. Weir

0000-0001-6986-0517

showing 2 related works from this author

Lattice Calculation of the Decay of Primordial Higgs Condensate

2015

We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into $SU(2)$ gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale $H = 10^8$ GeV, we find that 90% of the Higgs condensate has decayed after $n \sim 10$ oscillation cycles. This differs significantly from the Abelian case where, given the same coupling strengths, most of the condensate would persist after the resonance.

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::LatticeLattice field theoryFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciences010306 general physicsSpecial unitary groupBosonCoupling constantPhysicsCondensed Matter::Quantum GasesGauge boson010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyAstronomy and AstrophysicsHigh Energy Physics - PhenomenologyHiggs bosonBack-reactionHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Detecting gravitational waves from cosmological phase transitions with LISA: an update

2020

MC was funded by the Royal Society under the Newton International Fellowship program. GD would like to thank CNPq (Brazil) for financial support. MH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1), and the Academy of Finland (grant number 286769). SJH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1). The work of JK was supported by Department of Energy (DOE) grant DE-SC0019195 and NSF grant PHY-1719642. TK and GS are funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 \Quantum Universe" - 390833306. JMN is supported by Ramon y Cajal Fellowship contract RYC-2017-22986…

Phase transitionCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard ModelDark matterstandard modelFOS: Physical sciencesContext (language use)gravitational radiation: direct detection01 natural sciencesdark matterbubble: nucleationGravitational wavesTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)effective field theory0103 physical sciencesEffective field theoryenergy: densitynumerical calculationsCosmological phase transitionsperturbation theoryPhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]wave: acousticLISACOSMIC cancer database010308 nuclear & particles physicsGravitational wavenew physicsGravitational theorygravitational radiationAstronomy and Astrophysicscritical phenomenagravitational radiation detectorHigh Energy Physics - PhenomenologyGravitational sourcesgravitational radiation: emission[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Higgs modelPerturbation theory (quantum mechanics)gravitational radiation: power spectrum[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]dilatonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct