0000000000417619

AUTHOR

Kari Enqvist

0000-0002-0163-6217

Postinationary vacuum instability and Higgs-inflaton couplings

The Higgs-inflaton coupling plays an important role in the Higgs field dynamics in the early Universe. Even a tiny coupling generated at loop level can have a dramatic effect on the fate of the electroweak vacuum. Such Higgs-inflaton interaction is present both at the trilinear and quartic levels in realistic reheating models. In this work, we examine the Higgs dynamics during the preheating epoch, focusing on the effects of the parametric and tachyonic resonances. We use lattice simulations and other numerical tools in our studies. We find that the resonances can induce large fluctuations of the Higgs field which destabilize the electroweak vacuum. Our considerations thus provide an upper …

research product

Lattice Calculation of the Decay of Primordial Higgs Condensate

We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into $SU(2)$ gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale $H = 10^8$ GeV, we find that 90% of the Higgs condensate has decayed after $n \sim 10$ oscillation cycles. This differs significantly from the Abelian case where, given the same coupling strengths, most of the condensate would persist after the resonance.

research product

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

research product

Postinflationary vacuum instability and Higgs-inflaton couplings

The Higgs-inflaton coupling plays an important role in the Higgs field dynamics in the early Universe. Even a tiny coupling generated at loop level can have a dramatic effect on the fate of the electroweak vacuum. Such Higgs-inflaton interaction is present both at the trilinear and quartic levels in realistic reheating models. In this work, we examine the Higgs dynamics during the preheating epoch, focusing on the effects of the parametric and tachyonic resonances. We use lattice simulations and other numerical tools in our studies. We find that the resonances can induce large fluctuations of the Higgs field which destabilize the electroweak vacuum. Our considerations thus provide an upper …

research product

Observational signatures of Higgs inflation

We investigate the dependency of Higgs inflation on the non-renormalisable matching between the low energy Standard Model limit and the inflationary regime at high energies. We show that for the top mass range $m_t \gtrsim 171.8$ GeV the scenario robustly predicts the spectral index $n_s \simeq 0.97$ and the tensor-to-scalar ratio $r\simeq 0.003$. The matching is however non-trivial, even the best-fit values $m_h=125.09$ GeV and $m_t=173.21$ GeV require a jump $\delta \lambda \sim 0.01$ in the Higgs coupling below the inflationary scale. For $m_t\lesssim 171.8$ GeV, the matching may generate a feature in the inflationary potential. In this case the predicted values of $n_s$ and $r$ vary but…

research product

A New Low Background Laboratory in the Pyhäsalmi Mine : Towards 14C free liquid scintillator for low energy neutrino experiments

A new low background laboratory in Pyhäsalmi mine in the Central Finland has been put into operation in the beginning of 2017. The laboratory operates at the depth of 1436 m (~4100 meters of water equivalent). In this paper, we present description of the laboratory’s existing facility and background conditions. In the laboratory, a series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring the 14C/12C ratio smaller than 10-18 . peerReviewed

research product