0000000000417619

AUTHOR

Kari Enqvist

0000-0002-0163-6217

showing 6 related works from this author

Postinationary vacuum instability and Higgs-inflaton couplings

2016

The Higgs-inflaton coupling plays an important role in the Higgs field dynamics in the early Universe. Even a tiny coupling generated at loop level can have a dramatic effect on the fate of the electroweak vacuum. Such Higgs-inflaton interaction is present both at the trilinear and quartic levels in realistic reheating models. In this work, we examine the Higgs dynamics during the preheating epoch, focusing on the effects of the parametric and tachyonic resonances. We use lattice simulations and other numerical tools in our studies. We find that the resonances can induce large fluctuations of the Higgs field which destabilize the electroweak vacuum. Our considerations thus provide an upper …

General Relativity and Quantum CosmologyHiggs-inflation couplingsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentAstrophysics::Cosmology and Extragalactic Astrophysics
researchProduct

Observational signatures of Higgs inflation

2016

We investigate the dependency of Higgs inflation on the non-renormalisable matching between the low energy Standard Model limit and the inflationary regime at high energies. We show that for the top mass range $m_t \gtrsim 171.8$ GeV the scenario robustly predicts the spectral index $n_s \simeq 0.97$ and the tensor-to-scalar ratio $r\simeq 0.003$. The matching is however non-trivial, even the best-fit values $m_h=125.09$ GeV and $m_t=173.21$ GeV require a jump $\delta \lambda \sim 0.01$ in the Higgs coupling below the inflationary scale. For $m_t\lesssim 171.8$ GeV, the matching may generate a feature in the inflationary potential. In this case the predicted values of $n_s$ and $r$ vary but…

Particle physicsMatching (statistics)Cosmology and Nongalactic Astrophysics (astro-ph.CO)STANDARD MODELFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesphysics of the early universeinflationELECTROWEAK VACUUM010306 general physicscosmology of theories beyond the SMBosonInflation (cosmology)PhysicsSpectral index010308 nuclear & particles physicsINDUCED GRAVITY INFLATIONHigh Energy Physics::PhenomenologySpectral densityBOSONAstronomy and Astrophysics115 Astronomy Space scienceHigh Energy Physics - Phenomenologyparticle physics - cosmology connectionJumpHiggs bosonHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A New Low Background Laboratory in the Pyhäsalmi Mine : Towards 14C free liquid scintillator for low energy neutrino experiments

2017

A new low background laboratory in Pyhäsalmi mine in the Central Finland has been put into operation in the beginning of 2017. The laboratory operates at the depth of 1436 m (~4100 meters of water equivalent). In this paper, we present description of the laboratory’s existing facility and background conditions. In the laboratory, a series of measurements has been started where the 14C concentration is determined from several liquid scintillator samples. A dedicated setup has been designed and constructed with the aim of measuring the 14C/12C ratio smaller than 10-18 . peerReviewed

Low energyta114research equipmentcosmic radiationNuclear engineeringtutkimuslaitteetneutriinotEnvironmental scienceneutrinosNeutrinoScintillatorWater equivalentkosminen säteily
researchProduct

Lattice Calculation of the Decay of Primordial Higgs Condensate

2015

We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into $SU(2)$ gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale $H = 10^8$ GeV, we find that 90% of the Higgs condensate has decayed after $n \sim 10$ oscillation cycles. This differs significantly from the Abelian case where, given the same coupling strengths, most of the condensate would persist after the resonance.

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::LatticeLattice field theoryFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciences010306 general physicsSpecial unitary groupBosonCoupling constantPhysicsCondensed Matter::Quantum GasesGauge boson010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyAstronomy and AstrophysicsHigh Energy Physics - PhenomenologyHiggs bosonBack-reactionHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

2014

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

Physics::Instrumentation and Detectorsfar detectorkaukoputket ja teleskoopit7. Clean energyviolation [CP]CP violation; Neutrino Detectors and Telescopes; Oscillation; Nuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Observatorymass: hierarchy [neutrino]detector [neutrino]QCPhysicsTime projection chamberLarge Hadron ColliderOscillationmagnetization [iron]oscillation [neutrino]High Energy Physics - PhenomenologyCP violationliquid argon [time projection chamber]CP violationNeutrinoParticle physicsNuclear and High Energy PhysicsCERN Lab530 PhysicseducationFOS: Physical sciencesddc:500.2oscillation [flavor]114 Physical sciencesNuclear physicsphase spacenear detectorstatistical analysisiron [calorimeter]Particle Physics - PhenomenologyAstroparticle physicsNeutrino Detectors and Telescopesta114Físicaflavor [neutrino]CP [phase]CERN SPSMODELproposed [observatory]Oscillation13. Climate actionPhase space[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]gas [argon]beam [neutrino]High Energy Physics::ExperimentMATTERneutrino detectorsCP violation.
researchProduct

Postinflationary vacuum instability and Higgs-inflaton couplings

2016

The Higgs-inflaton coupling plays an important role in the Higgs field dynamics in the early Universe. Even a tiny coupling generated at loop level can have a dramatic effect on the fate of the electroweak vacuum. Such Higgs-inflaton interaction is present both at the trilinear and quartic levels in realistic reheating models. In this work, we examine the Higgs dynamics during the preheating epoch, focusing on the effects of the parametric and tachyonic resonances. We use lattice simulations and other numerical tools in our studies. We find that the resonances can induce large fluctuations of the Higgs field which destabilize the electroweak vacuum. Our considerations thus provide an upper …

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::LatticePhysics beyond the Standard ModeleducationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesUpper and lower boundsInstabilityGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)inflation Higgs0103 physical sciences010306 general physicsPhysicsCoupling010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionAstronomy and AstrophysicsInflatonHigh Energy Physics - PhenomenologyHiggs fieldHiggs bosonHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct