0000000000418273
AUTHOR
R.s. Martin
Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawai`i
Volcanic plume samples taken in 2008 and 2009 from the Halemàumàu eruption at Kīlauea provide new insights into Kīlauea's degassing behaviour. The Cl, F and S gas systematics are consistent with syn-eruptive East Rift Zone measurements suggesting that the new Halemàumàu activity is fed by a convecting magma reservoir shallower than the main summit storage area. Comparison with degassing models suggests that plume halogen and S composition is controlled by very shallow (<3m depth) decompression degassing and progressive loss of volatiles at the surface. Compared to most other global volcanoes, Kīlauea's gases are depleted in Cl with respect to S. Similarly, our Br/S and I/S ratio measurem…
Real-time simultaneous detection of volcanic Hg and SO2at La Fossa Crater, Vulcano (Aeolian Islands, Sicily)
Measuring Hg/SO2 ratios in volcanic emissions is essential for better apportioning the volcanic contribution to the global Hg atmospheric cycle. Here, we report the first real-time simultaneous measurement of Hg and SO2 in a volcanic plume, based on Lumex and MultiGAS techniques, respectively. We demonstrate that the use of these novel techniques allows the measurements of Hg/SO2 ratios with a far better time resolution than possible with more conventional methods. The Hg/SO2 ratio in the plume of FO fumarole on La Fossa Crater, Vulcano Island spanned an order of magnitude over a 30 minute monitoring period, but was on average in qualitative agreement with the Hg/SO2 ratio directly measured…
Rapid oxidation of mercury (Hg) at volcanic vents: Insights from high temperature thermodynamic models of Mt Etna's emissions
A major uncertainty regarding the environmental impacts of volcanic Hg is the extent to which Hg is deposited locally or transported globally. An important control on dispersion and deposition is the oxidation state of Hg compounds: Hg(0) is an inert, insoluble gas, while Hg(II) occurs as reactive gases or in particles, which deposit rapidly and proximally, near the volcanic vent. Using a new high temperature thermodynamic model, we show that although Hg in Etna's magmatic gases is almost entirely Hg(0) (i.e., gaseous elemental mercury), significant quantities of Hg(II) are likely formed at Etna's vents as gaseous HgCl2, when magmatic gases are cooled and oxidised by atmospheric gases. Thes…
Sweet chestnut (Castanea sativa) leaves as a bio-indicator of volcanic gas, aerosol and ash deposition onto the flanks of Mt Etna in 2005–2007
Sweet chestnut leaves (Castanea sativa) collected from the flanks of Mt Etna volcano in 2005-2007 were analysed by inductively-coupled plasma mass spectrometry to investigate the spatial and temporal variability of element concentrations. The aim of this work was to determine whether these leaves are a bio-indicator for volcanic gas, aerosol and ash deposition and to gain new insights into the environmental effects of quiescent and eruptive volcanic plumes. Results show a positive correlation between sample variability in the concentration of elements in Castanea sativa and enrichment factors of elements in the plume. The spatial and temporal variability of chalcophilic elements (As, Cd, Cu…
Bioindication of volcanic mercury (Hg) deposition around Mt. Etna (Sicily)
Mt. Etna is a major natural source of Hg to the Mediterranean region. Total mercury concentrations, [Hg] tot, in Castanea sativa (sweet chestnut) leaves sampled 7-13km from Etna's vents (during six campaigns in 2005-2011) were determined using atomic absorption spectroscopy. [Hg] tot in C. sativa was greatest on Etna's SE flank reflecting Hg deposition from the typically overhead volcanic plume. [Hg] tot also showed Hg accumulation over the growing season, increasing with leaf age and recent eruptive activity. [Hg] tot in C. sativa was not controlled by [Hg] tot in soils, which instead was greatest on Etna's NW flank, and was correlated with the proportion of organic matter in the soil (% O…
Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes
Particle size distributions for soluble and insoluble species in Mt. Etna's summit plumes were measured across an extended size range (10 nm < d < 100 μm) using a combination of techniques. Automated scanning electron microscopy (QEMSCAN) was used to chemically analyze many thousands of insoluble particles (collected on pumped filters) allowing the relationships between particle size, shape, and composition to be investigated. The size distribution of fine silicate particles (d < 10 μm) was found to be lognormal, consistent with formation by bursting of gas bubbles at the surface of the magma. The compositions of fine silicate particles were found to vary between magmatic and nearl…
Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano
We present the results of a study of volcanic gases at Soufriere Hills Volcano, Montserrat, which includes the first spectroscopic measurements of the major gas species CO2 and H2S at this volcano using a Multisensor Gas Analyzer System (MultiGAS) sensor. The fluxes of CO2 and H2S were 640.2750 t/d and 84.266 t/d, respectively, during July 2008, during a prolonged eruptive pause. The flux of CO2 is similar to estimates for the entire arc from previous geochemical studies, while the measured H2S flux significantly alters our interpretation of the sulphur budget for this volcano. The fluxes of both sulphur and carbon show considerable excesses over that which can be supplied by degassing of e…
Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): Part 1 – Major and trace element composition
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropo…
Application and evaluation of biomagnetic and biochemical monitoring of the dispersion and deposition of volcanically-derived particles at Mt. Etna, Italy
article i nfo Article history: Received 6 August 2009 Accepted 4 January 2010 Available online xxxx Biomagnetic monitoring, using tree leaves as passive surfaces for particle collection, has been shown to be a promising technique for assessing the dispersion and deposition of particles in the context of anthropogenic pollution. By comparing leaves' magnetic properties with trace metal levels measured in the leaves, we here assess the utility of the biomagnetic technique as a sensitive, fast and inexpensive method for assessment of volcanic plume deposition. Samples of sweet chestnut leaves (Castanea sativa) were collected from the area surrounding Mt. Etna volcano in Sicily during the 2008 …