0000000000418286
AUTHOR
Yuri L. Sachkov
Bicycle paths, elasticae and sub-Riemannian geometry
We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented. peerReviewed
Sub-Finsler Geodesics on the Cartan Group
This paper is a continuation of the work by the same authors on the Cartan group equipped with the sub-Finsler $\ell_\infty$ norm. We start by giving a detailed presentation of the structure of bang-bang extremal trajectories. Then we prove upper bounds on the number of switchings on bang-bang minimizers. We prove that any normal extremal is either bang-bang, or singular, or mixed. Consequently, we study mixed extremals. In particular, we prove that every two points can be connected by a piecewise smooth minimizer, and we give a uniform bound on the number of such pieces.
Periodic controls in step 2 sub-Finsler problems
We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all linear-in-momenta Casimirs on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.