0000000000418286

AUTHOR

Yuri L. Sachkov

showing 4 related works from this author

Bicycle paths, elasticae and sub-Riemannian geometry

2020

We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).

Mathematics - Differential GeometryGeodesicGeneral Physics and AstronomyGeometryRiemannian geometry01 natural sciencessymbols.namesakeMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematical PhysicsMathematics53C17 (Primary) 53A17 53A04 (Secondary)Group (mathematics)Plane (geometry)Applied Mathematics010102 general mathematicsMetric Geometry (math.MG)Statistical and Nonlinear Physics010101 applied mathematicsDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsMetric (mathematics)Euler's formulasymbolsNonlinearity
researchProduct

Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems

2020

We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented. peerReviewed

0209 industrial biotechnologyPure mathematicsRank (linear algebra)variaatiolaskenta02 engineering and technology01 natural sciencesdifferentiaaligeometriaoptimal controlsymbols.namesake020901 industrial engineering & automationMathematics (miscellaneous)sub-Finsler geometryPontryagin maximum principleLie algebra0101 mathematicsMathematicsLie groups010102 general mathematicsLie groupBasis (universal algebra)matemaattinen optimointiFoliationsäätöteoriasymbolsCarnot cycleConvex functionSymplectic geometryRegular and Chaotic Dynamics
researchProduct

Sub-Finsler Geodesics on the Cartan Group

2018

This paper is a continuation of the work by the same authors on the Cartan group equipped with the sub-Finsler $\ell_\infty$ norm. We start by giving a detailed presentation of the structure of bang-bang extremal trajectories. Then we prove upper bounds on the number of switchings on bang-bang minimizers. We prove that any normal extremal is either bang-bang, or singular, or mixed. Consequently, we study mixed extremals. In particular, we prove that every two points can be connected by a piecewise smooth minimizer, and we give a uniform bound on the number of such pieces.

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematicsPhysics::General PhysicsGeodesic49K1549J1502 engineering and technology01 natural sciencesContinuationGeneral Relativity and Quantum CosmologyPhysics::Popular Physics020901 industrial engineering & automationMathematics (miscellaneous)Geometric controlFOS: Mathematics0101 mathematicsMathematics - Optimization and ControlMathematics010102 general mathematicsta111matemaattinen optimointiPhysics::History of Physics49J15; 49K15; Cartan group; geometric control; Sub-Finsler geometry; time-optimal control; Mathematics (miscellaneous)säätöteoriaDifferential Geometry (math.DG)Optimization and Control (math.OC)geometric controlNorm (mathematics)Piecewisetime-optimal controldifferentiaaliyhtälötSub-Finsler geometryCartan groupRegular and Chaotic Dynamics
researchProduct

Periodic controls in step 2 sub-Finsler problems

2019

We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all linear-in-momenta Casimirs on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.

Mathematics - Differential GeometryDifferential Geometry (math.DG)Optimization and Control (math.OC)FOS: MathematicsMathematics - Optimization and Control
researchProduct