0000000000418316

AUTHOR

J. Wahrhusen

showing 3 related works from this author

Angular dependence of the domain wall depinning field in the sensors with segmented corners

2017

Rotating domain wall based sensors that have recently been developed are based on a segmented looping geometry. In order to determine the crucial pinning of domain walls in this special geometry, we investigate the depinning under different angles of an applied magnetic field and obtain the angular dependence of the depinning field of the domain walls. Due to the geometry, the depinning field not only exhibits a 180$^\circ$-periodicity but a more complex dependence on the angle. The depinning field depends on two different angles associated with the initial state and the segmented geometry of the corner. We find that depending on the angle of the applied field two different switching proces…

010302 applied physics0301 basic medicineCondensed Matter - Materials ScienceHistoryMaterials scienceField (physics)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences01 natural sciencesComputer Science ApplicationsEducationMagnetic field03 medical and health sciences030104 developmental biologyDomain wall (magnetism)0103 physical sciencesAngular dependence
researchProduct

Geometrical dependence of domain wall propagation and nucleation fields in magnetic domain wall sensor devices

2017

We study the key domain wall properties in segmented nanowires loop-based structures used in domain wall based sensors. The two reasons for device failure, namely the distribution of domain wall propagation field (depinning) and the nucleation field are determined with Magneto-Optical Kerr Effect (MOKE) and Giant Magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni$_{81}$Fe$_{19}$, a complete GMR stack with Co$_{90}$Fe$_{10}$/Ni$_{81}$Fe$_{19}$ as a free layer and a single layer of Co$_{90}$Fe$_{10}$ are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy an…

Materials scienceMagnetic domainNucleationGeneral Physics and AstronomyFOS: Physical sciencesField strength02 engineering and technologyApplied Physics (physics.app-ph)01 natural sciencesElectrical resistance and conductance0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010302 applied physicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryMaterials Science (cond-mat.mtrl-sci)Physics - Applied Physics021001 nanoscience & nanotechnologyMagnetic fieldPower (physics)Domain wall (magnetism)OptoelectronicsDevelopment (differential geometry)0210 nano-technologybusiness
researchProduct

Geometrically enhanced closed-loop multi-turn sensor devices that enable reliable magnetic domain wall motion

2017

We experimentally realize a sophisticated structure geometry for reliable magnetic domain wall-based multi-turn-counting sensor devices, which we term closed-loop devices that can sense millions of turns. The concept relies on the reliable propagation of domain walls through a cross-shaped intersection of magnetic conduits, allowing for the intertwining of loops of the sensor device. As a key step to reach the necessary reliability of the operation, we develop a combination of tilted wires called the syphon structure at the entrances of the cross. We measure the control and reliability of the domain wall propagation individually for cross-shaped intersections, the syphon geometries, and fin…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Field (physics)Magnetic domainFOS: Physical sciences02 engineering and technologyGauge (firearms)021001 nanoscience & nanotechnologyTopology01 natural sciencesMagnetic fieldDomain (software engineering)Superposition principleDomain wall (magnetism)Intersection0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technology
researchProduct