Three-dimensional object recognition by Fourier transform profilometry
An automatic method for three-dimensional (3-D) shape recognition is proposed. It combines the Fourier transform profilometry technique with a real-time recognition setup such as the joint transform correlator (JTC). A grating is projected onto the object surface resulting in a distorted grating pattern. Since this pattern carries information about the depth and the shape of the object, their comparison provides a method for recognizing 3-D objects in real time. A two-cycle JTC is used for this purpose. Experimental results demonstrate the theory and show the utility of the new proposed method.
Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT’s in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from −1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are discussed.
Wavelength-multiplexing system for single-mode image transmission
The expanding use of optical communication by means of optical fibers and the situation of drastically increasing amounts of data to be transmitted urge the exploration of novel systems permitting the transmission of large amounts of spatial information by fiber with smaller spatial resolution. An optical encoding and decoding system is suggested for transmitting one- or two-dimensional images by means of a single-mode fiber. The superresolving system is based on wavelength multiplexing of the input spatial information, which is achieved with diffractive optical elements. Preliminary experimental results demonstrate the capabilities of the suggested method for the one- and two-dimensional c…
Fractional wavelet transform
The wavelet transform, which has had a growing importance in signal and image processing, has been generalized by association with both the wavelet transform and the fractional Fourier transform. Possible implementations of the new transformation are in image compression, image transmission, transient signal processing, etc. Computer simulations demonstrate the abilities of the novel transform. Optical implementation of this transform is briefly discussed.
Refractive analysis of the human cornea through propagated fields
A new technique for analysing the optical quality of the human cornea is presented. Corneal maps are obtained through keratographies and then converted into phase maps. The propagated fields generated from this surface are plotted and studied. It is shown that any irregularity in the cornea affects the propagated field and the energy distribution at the focal plane. Simple applications are also indicated.
Nonlinear morphological correlation: optoelectronic implementation
An optoelectronic implementation of the nonlinear morphological correlation by use of a threshold-decomposition technique and a joint transform correlator architecture is presented. This nonlinear morphological correlation provides improved image detection compared with standard linear optical pattern-recognition correlation methods. It also offers a more robust detection of low-intensity images in the presence of high-intensity patterns to be rejected.
Fast algorithms for free-space diffraction patterns calculation
Here we present a fast algorithm for Fresnel integral calculation. Some fast algorithms using the fast Fourier transform are analysed and their performance has been checked. These methods are of easy implementation, but are only valid for a specific range of distances. Fast algorithms based on the Fractional Fourier transform allow accurate evaluation of the Fresnel integral from object to Fraunhofer domain in a single step.
Novel image processing approach to detect malaria
In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach. S.F. acknowledges the grant from Area Science Park of Trieste. J.G. acknowledges the support he got from project FIS2013-47548-P. D.M. and B.F. acknowl…