0000000000418604

AUTHOR

H. Oberhummer

showing 4 related works from this author

Neutron measurements for advanced nuclear systems: The n_TOF project at CERN

2012

A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…

Nuclear and High Energy PhysicsAstrofísica nuclearNuclear engineeringNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physics0103 physical sciencesNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentInstrumentationPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear fissionNuclear dataNeutron radiationNuclear technologyEnergia nuclearPhysics::Accelerator PhysicsFísica nuclearSpallation Neutron Source
researchProduct

Direct neutron capture for magic-shell nuclei.

1995

In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction $^{48}$Ca(n,$\gamma)^{49}$Ca for projectile energies below 250\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also used to calculate the cross section for $^{50}$Ca(n,$\gamma)^{51}$Ca.

PhysicsNuclear and High Energy PhysicsNuclear TheoryScatteringAstrophysics::High Energy Astrophysical PhenomenaRadiative captureFOS: Physical sciencesNuclear Theory (nucl-th)Neutron captureBound stateDirect reactionAtomic physicsNuclear ExperimentNuclear theoryPhysical review. C, Nuclear physics
researchProduct

Measurement of the n-TOF beam profile with a micromegas detector

2004

A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…

Elastic scatteringPhysicsNuclear and High Energy PhysicsArgonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaBeam profileNuclear Theorychemistry.chemical_elementMicroMegas detectorNUCLEAR PHYSICSNeutron radiationNuclear physicsNeutron capturechemistryNEUTRON BEAMSNeutron cross sectionMICROMEGAS DETECTORNeutron detectionNeutron beam profilerNeutronNuclear ExperimentInstrumentationMicromegas
researchProduct

Dependence of direct neutron capture on nuclear-structure models

1998

The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We calculate direct neutron capture on the even-even isotopes $^{124-145}$Sn and $^{208-238}$Pb with energy levels, masses, and nuclear density distributions taken from different nuclear-structure models. The utilized structure models are a Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a macroscopic-microscopic model based on the finite-range droplet model and a folded-Yukawa single-particle potential. Due to the differences in the resulting neutron separation and level energies, the investigated models yield capture cross sections sometimes differing by orde…

PhysicsNuclear and High Energy PhysicsNuclear TheoryAstrophysics (astro-ph)Nuclear TheoryNuclear structureFOS: Physical sciencesAstrophysicsNuclear Theory (nucl-th)Nuclear physicsNeutron captureMean field theoryNuclear astrophysicsr-processNeutronAtomic physicsNuclear densityEnergy (signal processing)
researchProduct