0000000000418756

AUTHOR

Raghuveer Garani

0000-0001-7553-9914

showing 2 related works from this author

Dark matter in the Sun: scattering off electrons vs nucleons

2017

The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary to compute the neutrino production rat…

QuarkElastic scatteringPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Annihilation010308 nuclear & particles physicsScatteringDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciences7. Clean energyNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Neutrino detector0103 physical sciencesNeutrino010306 general physicsNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Systematic uncertainties from halo asphericity in dark matter searches

2015

Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called $J$ factors for dark matter annihilations and decays from the galactic …

N-body SimulationsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Milky WayDwarf galaxy problemDark matterScalar field dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesMany-body problemHigh Energy Physics - Phenomenology (hep-ph)Baryonic dark matter0103 physical sciencesDark matter010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsPotential impactAnnihilation010308 nuclear & particles physicsHot dark matterGalactic CenterAstronomyAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxiestriaxial halosDark matter haloHigh Energy Physics - Phenomenology13. Climate actionAstrophysics of Galaxies (astro-ph.GA)Cuspy halo problemHaloDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct