0000000000419694
AUTHOR
Jordi Villadelprat
Unfolding of saddle-nodes and their Dulac time
Altres ajuts: UNAB10-4E-378, co-funded by ERDF "A way to build Europe" and by the French ANR-11-BS01-0009 STAAVF. In this paper we study unfoldings of saddle-nodes and their Dulac time. By unfolding a saddle-node, saddles and nodes appear. In the first result (Theorem A) we give a uniform asymptotic expansion of the trajectories arriving at the node. Uniformity is with respect to all parameters including the unfolding parameter bringing the node to a saddle-node and a parameter belonging to a space of functions. In the second part, we apply this first result for proving a regularity result (Theorem B) on the Dulac time (time of Dulac map) of an unfolding of a saddle-node. This result is a b…
The period function of reversible quadratic centers
Abstract In this paper we investigate the bifurcation diagram of the period function associated to a family of reversible quadratic centers, namely the dehomogenized Loud's systems. The local bifurcation diagram of the period function at the center is fully understood using the results of Chicone and Jacobs [C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989) 433–486]. Most of the present paper deals with the local bifurcation diagram at the polycycle that bounds the period annulus of the center. The techniques that we use here are different from the ones in [C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vecto…
The index of stable critical points
Abstract In this paper we show that in dimension greater or equal than 3 the index of a stable critical point can be any integer. More concretely, given any k∈ Z and n⩾3 we construct a C ∞ vector field on R n with a unique critical point which is stable (in positive and negative time) and has index equal to k. This result extends previous ones on the index of stable critical points.
On the time function of the Dulac map for families of meromorphic vector fields
Given an analytic family of vector fields in Bbb R2 having a saddle point, we study the asymptotic development of the time function along the union of the two separatrices. We obtain a result (depending uniformly on the parameters) which we apply to investigate the bifurcation of critical periods of quadratic centres.