0000000000421543
AUTHOR
Rahul Summan
A new probe concept for internal pipework inspection
The interior visual inspection of nuclear pipework is a critical inspection activity required to ensure the continued safe, reliable operation of plant and thus avoid costly outages. Typically, the video output from a manually deployed probe is viewed by an operator online with the task of identifying and estimating the location of surface defects such as cracks, corrosion and pitting. However, it is very difficult to estimate the nature and spatial extent of defects from the often disorientating small field of view video of a relatively large structure. This work describes a new visual inspection system incorporating a wide field of view machine vision camera and additional sensors designe…
Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing
This work presents the study of the accuracy of an industrial robot KR5 arc HW, used to perform quality inspections of components with complex shapes. Metrology techniques such as laser tracking and large volume photogrammetry were deployed to quantify both pose and dynamic path accuracies of the robot in accordance with ISO 9283:1998. The overall positioning pose inaccuracy of the robot is found to be almost 1 mm and path inaccuracy at 100% of the robot rated velocity is 4.5 mm. The maximum pose orientation inaccuracy is found to be 14 degrees and the maximum path orientation inaccuracy is 5 degrees. Despite of the significant maximum inaccuracies, uncertainty of a robotic scanning applica…
Flexible integration of robotics, ultrasonics and metrology for the inspection of aerospace components
The performance of modern robotic manipulators has allowed research in recent years, for the development of fast automated non-destructive testing (NDT) of complex geometries. Contemporary robots are well suited for their accuracy and flexibility when adapting to new tasks. Several robotic inspection prototype systems and a number of commercial products have been created around the world. This paper describes the latest progress of a new phase of the research applied to a composite aerospace component of size 1 by 3 metres. A multi robot flexible inspection cell was used to take the fundamental research and the feasibility studies to higher technology readiness levels, all set for future in…
Introducing a new method for efficient visualization of complex shape 3D ultrasonic phased-array C-scans
Automated robotic inspection systems allow the collection of large data volumes, compared to existing inspection systems. To maximize the throughput associated with the non-destructive evaluation phase, it is crucial that the reconstructed inspection data sets are generated and examined rapidly without a loss of detail. Data analysis often becomes the bottleneck of automated inspections. Therefore, new data visualization tools, suitable to screen the NDT information obtained through robotic systems, are urgently required. This paper presents a new approach, for the generation of three-dimensional ultrasonic C-scans of large and complex parts, suitable for application to high data throughput…
A novel visual pipework inspection system
The interior visual inspection of pipelines in the nuclear industry is a safety critical activity conducted during outages to ensure the continued safe and reliable operation of plant. Typically, the video output by a manually deployed probe is viewed by an operator looking to identify and localize surface defects such as corrosion, erosion and pitting. However, it is very challenging to estimate the nature and extent of defects by viewing a large structure through a relatively small field of view. This work describes a new visual inspection system employing photogrammetry using a fisheye camera and a structured light system to map the internal geometry of pipelines by generating a photorea…
Conformable eddy current array delivery
The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path…
Fast ultrasonic phased array inspection of complex geometries delivered through robotic manipulators and high speed data acquisition instrumentation
Performance of modern robotic manipulators has enabled research and development of fast automated non-destructive testing (NDT) systems for complex geometries. This paper presents recent outcomes of work aimed at removing the bottleneck due to data acquisition rates, to fully exploit the scanning speed of modern 6-DoF manipulators. State of the art ultrasonic instrumentation has been integrated into a large robot cell to enable fast data acquisition, high scan resolutions and accurate positional encoding. A fibre optic connection between the ultrasonic instrument and the server computer enables data transfer rates up to 1.6GB/s. Multiple data collection methods are compared. Performance of …
Index-based triangulation method for efficient generation of large three-dimensional ultrasonic C-scans
The demand for high-speed ultrasonic scanning of large and complex components is driven by a desire to reduce production bottlenecks during the non-destructive evaluation (NDE) of critical parts. Emerging systems (including robotic inspection) allow for the collection of large volumes of data in short time spans, compared to existing inspection systems. To maximise throughput, it is crucial that the reconstructed inspection datasets are generated and evaluated rapidly without loss of detail. This requires new data visualisation and analysis tools capable of mapping complex geometries while guaranteeing full coverage. This paper presents an entirely new approach for the visualisation of thre…
Novel algorithms for 3D surface point cloud boundary detection and edge reconstruction
Abstract Tessellated surfaces generated from point clouds typically show inaccurate and jagged boundaries. This can lead to tolerance errors and problems such as machine judder if the model is used for ongoing manufacturing applications. This paper introduces a novel boundary point detection algorithm and spatial FFT-based filtering approach, which together allow for direct generation of low noise tessellated surfaces from point cloud data, which are not based on pre-defined threshold values. Existing detection techniques are optimized to detect points belonging to sharp edges and creases. The new algorithm is targeted at the detection of boundary points and it is able to do this better tha…