0000000000421900

AUTHOR

Laurent Nana

showing 4 related works from this author

Chaotic behaviour in deformable models: the asymmetric doubly periodic oscillators

2002

Abstract The motion of a particle in a one-dimensional perturbed asymmetric doubly periodic (ASDP) potential is investigated analytically and numerically. A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. Theory predicts the regions of chaotic behaviour of orbits in a good agreement with computer calculations.

General MathematicsApplied MathematicsComputationMathematical analysisChaoticGeneral Physics and AstronomyMotion (geometry)Statistical and Nonlinear PhysicsLyapunov exponentBifurcation diagramNonlinear Sciences::Chaotic Dynamicssymbols.namesakeSimple (abstract algebra)Phase spacesymbolsMelnikov methodMathematicsChaos, Solitons & Fractals
researchProduct

Chaotic behavior in deformable models: the double-well doubly periodic oscillators

2001

Abstract The motion of a particle in a one-dimensional perturbed double-well doubly periodic potential is investigated analytically and numerically. A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. The parameter regions of chaotic behavior predicted by the theoretical analysis agree very well with numerical simulations.

General MathematicsApplied MathematicsComputationMathematical analysisChaoticGeneral Physics and AstronomyMotion (geometry)Statistical and Nonlinear PhysicsLyapunov exponentBifurcation diagramNonlinear Sciences::Chaotic Dynamicssymbols.namesakeClassical mechanicsSimple (abstract algebra)Phase spacesymbolsParticleMathematicsChaos, Solitons & Fractals
researchProduct

Subharmonic and homoclinic bifurcations in the driven and damped sine-Gordon system

1999

Abstract Chaotic responses induced by an applied biharmonic driven signal on the sine-Gordon (sG) system influenced by a constant dc-driven and the damping fields are investigated using a collective coordinate approach for the motion of the breather in the system. For this biharmonic signal, one term has a large amplitude at low frequency. Thus, the classical Melnikov method does not apply to such a system; however, we use the modified version of the Melnikov method to homoclinic bifurcations of the perturbed sG system. Additionally resonant breathers are studied using the modified subharmonic Melnikov theory. This dynamic behavior is illustrated by some numerical computations.

BreatherMathematical analysisChaoticStatistical and Nonlinear PhysicsCondensed Matter PhysicsSignalNonlinear Sciences::Chaotic DynamicsAmplitudeClassical mechanicsBiharmonic equationHomoclinic orbitSineConstant (mathematics)Nonlinear Sciences::Pattern Formation and SolitonsMathematicsPhysica D: Nonlinear Phenomena
researchProduct

Horseshoe-shaped maps in chaotic dynamics of long Josephson junction driven by biharmonic signals

2000

Abstract A collective coordinate approach is applied to study chaotic responses induced by an applied biharmonic driven signal on the long Josephson junction influenced by a constant dc-driven field with breather initial conditions. We derive a nonlinear equation for the collective variable of the breather and a new version of the Melnikov method is then used to demonstrate the existence of Smale horseshoe-shaped maps in its dynamics. Additionally, numerical simulations show that the theoretical predictions are well reproduced. The subharmonic Melnikov theory is applied to study the resonant breathers. Results obtained using this approach are in good agreement with numerical simulations of …

Field (physics)BreatherGeneral MathematicsApplied MathematicsChaoticGeneral Physics and AstronomyStatistical and Nonlinear PhysicsNonlinear systemClassical mechanicsBiharmonic equationConstant (mathematics)Nonlinear Sciences::Pattern Formation and SolitonsVariable (mathematics)MathematicsLong Josephson junctionChaos, Solitons & Fractals
researchProduct