0000000000421900
AUTHOR
Laurent Nana
Chaotic behaviour in deformable models: the asymmetric doubly periodic oscillators
Abstract The motion of a particle in a one-dimensional perturbed asymmetric doubly periodic (ASDP) potential is investigated analytically and numerically. A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. Theory predicts the regions of chaotic behaviour of orbits in a good agreement with computer calculations.
Chaotic behavior in deformable models: the double-well doubly periodic oscillators
Abstract The motion of a particle in a one-dimensional perturbed double-well doubly periodic potential is investigated analytically and numerically. A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. The parameter regions of chaotic behavior predicted by the theoretical analysis agree very well with numerical simulations.
Subharmonic and homoclinic bifurcations in the driven and damped sine-Gordon system
Abstract Chaotic responses induced by an applied biharmonic driven signal on the sine-Gordon (sG) system influenced by a constant dc-driven and the damping fields are investigated using a collective coordinate approach for the motion of the breather in the system. For this biharmonic signal, one term has a large amplitude at low frequency. Thus, the classical Melnikov method does not apply to such a system; however, we use the modified version of the Melnikov method to homoclinic bifurcations of the perturbed sG system. Additionally resonant breathers are studied using the modified subharmonic Melnikov theory. This dynamic behavior is illustrated by some numerical computations.
Horseshoe-shaped maps in chaotic dynamics of long Josephson junction driven by biharmonic signals
Abstract A collective coordinate approach is applied to study chaotic responses induced by an applied biharmonic driven signal on the long Josephson junction influenced by a constant dc-driven field with breather initial conditions. We derive a nonlinear equation for the collective variable of the breather and a new version of the Melnikov method is then used to demonstrate the existence of Smale horseshoe-shaped maps in its dynamics. Additionally, numerical simulations show that the theoretical predictions are well reproduced. The subharmonic Melnikov theory is applied to study the resonant breathers. Results obtained using this approach are in good agreement with numerical simulations of …