0000000000422351
AUTHOR
Marzena Nieradka
DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs)
Linearly conjugated benzene rings (acenes), belt-shape molecules (cyclic acenes) and model single wall carbon nanotubes (SWCNTs) were fully optimized at the unrestricted level of density functional theory (UB3LYP/6-31G*). The models of SWCNTs were selected to get some insight into the potential changes of NMR chemical shift upon systematic increase of the molecular size. The theoretical NMR chemical shifts were calculated at the B3LYP/pcS-2 level of theory using benzene as reference. In addition, the change of radial breathing mode (RBM), empirically correlated with SWCNT diameter, was directly related with the radius of cyclic acenes. Both geometrical and NMR parameters were extrapolated t…
Convergence of Nuclear Magnetic Shieldings in the Kohn-Sham Limit for Several Small Molecules.
Convergence patterns and limiting values of isotropic nuclear magnetic shieldings were studied for several small molecules (N2, CO, CO2, NH3, CH4, C2H2, C2H4, C2H6, and C6H6) in the Kohn-Sham limit. Individual results of calculations using dedicated families of Jensen's basis sets (pcS-n and pcJ-n) were fitted toward the complete basis set limit (CBS) using a simple two-parameter formula. Several density functionals were used; calculated vibrational corrections (ZPV) applied; and, for comparison purposes, similar calculations performed using RHF, MP2, SOPPA, SOPPA(CCSD), and CCSD(T) methods and additionally, the aug-cc-pVTZ-J basis set. Finally, the CBS estimated results were critically com…
Sensitivity of noble gas NMR parameters to the heterocyclic ring proximity. Density functional theory studies of Ne–furan and Ar–furan complexes
Theoretical modeling of noble gas interaction with furan as a simple heterocyclic ring was performed. The structures of neon–furan and argon–furan complexes were calculated at the MP2, M06-2X, CAM-B3LYP, APFD, and VSXC levels of theory using 6-311++G** basis set. The predicted 21Ne and 39Ar NMR chemical shifts for the Ne–furan and Ar–furan complexes calculated with pcS-3 and aug-pcS-3 basis sets were sensitive to the presence of the aromatic furan ring. Our results indicate a higher sensitivity of the neon and argon NMR probes than the previously reported 3He NMR spectroscopic parameters in studies of small heterocyclic rings containing the oxygen atom.
From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N2, CO, CO2, NH3, CH4, C2H2, C2H4, C2H6 and C6H6) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n com…
Modeling21Ne NMR parameters for carbon nanosystems
The potential of nuclear magnetic resonance (NMR) technique in probing the structure of porous systems including carbon nanostructures filled with inert gases is analysed theoretically using accurate calculations of neon ((21) Ne) nuclear magnetic shieldings. The CBS estimates of (21) Ne NMR parameters were performed for single atom, its dimer and neon interacting with acetylene, ethylene and 1,3-cyclopentadiene. Several levels of theory including restricted Hartree-Fock (RHF), Moller-Plesset perturbation theory to the second order (MP2), density functional theory (DFT) with van Voorhis and Scuseria's t-dependent gradient-corrected correlation functional (VSXC), coupled cluster with single …
Basis Set Convergence of Indirect Spin-Spin Coupling Constants in the Kohn-Sham Limit for Several Small Molecules
The performance of more than 40 density functionals in predicting indirect spin-spin coupling constants (SSCCs) in the Kohn-Sham basis set limit was tested. For comparison, similar calculations were performed using the RHF, SOPPA, SOPPA(CC2), and SOPPA(CCSD) methods, and the results were estimated toward the complete basis set (CBS) limit. The SSCCs of nine small molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6), and C(6)H(6)) were calculated using the dedicated Jensen pcJ-n polarization-consistent basis sets and used for the CBS limit estimations within the Kohn-Sham limit. These CBS results were compared with calculations using the aug-cc-pVTZ-J basis set. Among the 4…
From small to medium and beyond: a pragmatic approach in predicting properties of Ne containing structures
In this study, we outlined a pragmatic approach for structural studies leading to better understanding of polycarbon structures using 21Ne as a nuclear magnetic resonance (NMR) probe. 21Ne NMR parameters of a single neon atom and its dimer were predicted at the CCSD(T) level in combination with large basis sets. At a lower level of theory, an interaction of neon atom with 1,3-cyclopentadiene ring and with five- and six-membered rings in carbazole was studied using the restricted Hartree–Fock (RHF) and density functional theory (DFT) combined with smaller basis sets. The RHF and DFT modelling of neon interaction with nanosized objects were performed on cyclacenes and selected fullerenes.