0000000000422392

AUTHOR

Evgeny Blokhin

First-principles phonon calculations of Fe4+impurity in SrTiO3

The results of hybrid density functional theory calculations on phonons in Sr(Fe(x)Ti(1-x))O(3) solid solution within the formalism of a linear combination of atomic orbitals are presented. The phonon density of states (DOS) calculated for 6.25% Fe(4+) impurities is reported and defect-induced phonon modes are identified. Based on our calculations and group-theoretical analysis, we suggest for the first time an interpretation of experimentally observed Raman- and IR-active modes.

research product

A Comparative Ab Initio Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis on Phonon Contribution

Using a hybrid Hartree–Fock (HF)-DFT method combined with LCAO basis set and periodic supercell approach, the atomic, electronic structure and phonon properties of oxygen vacancies in ZnO and SrTiO3 were calculated and compared. The important role of a ghost basis function centered at the vacant site and defect spin state for SrTiO3 is discussed. It is shown that the use of hybrid functionals is vital for correct reproduction of defects basic properties. The Gibbs free energy of formation of oxygen vacancies and their considerable temperature dependence has been compared for the two oxides. These calculations were based on the polarizability model for the soft mode temperature behavior in S…

research product

Jahn-Teller effect in the phonon properties of defective SrTiO3from first principles

the Jahn–Teller effect occurs, thus reducing the cubic symmetry of a perfect crystal and leading to the appearance of both Raman- and infrared-active vibrational modes. The calculated phonon densities of states and group-theoretical analysis of defect-induced phonon frequencies were used for the interpretation of the relevant experimental data, once defect-induced local modes are identified. The temperature dependence of the Vo formation energy based on the calculated Gibbs free energy was also compared with experiments, and the phonon contribution therein estimated.

research product

Theoretical modeling of antiferrodistortive phase transition forSrTiO3ultrathin films

Combining group-theoretical analysis and first-principles density functional theory calculations, we confirm theoretically the antiferrodistortive phase transition in ultrathin SrTiO${}_{3}$ (001) TiO${}_{2}$-terminated films and compare it with a similar transition in the bulk. We demonstrate phonon softening at the $M$ point of the surface Brillouin zone and analyze the change in the calculated electronic and phonon properties upon phase transition.

research product

Phonon calculations in cubic and tetragonal phases of SrTiO3: A comparative LCAO and plane-wave study

The atomic, electronic structure and phonon frequencies have been calculated in cubic and low-temperature tetragonal SrTiO${}_{3}$ phases at the ab initio level. We demonstrate that the use of the hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard generalized gradient approximation (PBE) and hybrid PBE0 functionals are compared for the two types of approaches: a linear combination of atomic orbitals (CRYSTAL09 computer code) and plane waves (VASP5.2 code). The relation between cubic and tetragonal phases and the relevant antiferrodistortive phase transition is discussed in terms of group theory and is illustrated with an…

research product