0000000000422551

AUTHOR

Sebastian Schmachtel

Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles

The ultimate detection limit in analytic chemistry and biology is the single molecule. Commonly, fluorescent dye labels or enzymatic amplification are employed. This requires additional labeling of the analyte, which modifies the species under investigation and therefore influences biological processes. Here, we utilize single gold nanoparticles to detect single unlabeled proteins with extremely high temporal resolution. This allows for monitoring the dynamic evolution of a single protein binding event on a millisecond time scale. The technique even resolves equilibrium coverage fluctuations, opening a window into Brownian dynamics of unlabeled macromolecules. Therefore, our method enables …

research product

Narrowing the Plasmonic Sensitivity Distribution by Considering the Individual Size of Gold Nanorods

The plasmonic nanoparticle sensitivity, sensing volume, and the signal-to-noise ratio are strongly dependent on the nanoparticle dimensions. It is difficult to chemically produce or purify nanoparticles with a size variation of less than 10%. This size variation induces a systematic error in sensing experiments that can be reduced when the exact size of each individual nanoparticle is known. In this work, we show how the size of gold nanorods can be estimated directly from the optical spectra of single nanoparticles by using the increase of radiation damping with the nanoparticle size. We verify our approach by comparing these spectrally estimated sizes with the precise sizes of exactly the…

research product