0000000000422805

AUTHOR

Dario Polli

0000-0002-6960-5708

showing 3 related works from this author

Study of Mechanisms of Light-Induced Dissociation of Ru(dcbpy)(CO)2I2 in Solution down to 20 fs Time Resolution

2006

Mechanisms of the light-induced ligand exchange reaction of (trans-I) Ru(dcbpy)(CO)2I2 (dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine) in ethanol have been studied by transient absorption spectroscopy. Ultraviolet 20 fs excitation pulses centered at 325 nm were used to populate a vibrationally hot excited pi bipyridyl state of the reactant that quickly relaxes to a dissociative Ru-I state resulting in the release of one of the carbonyl groups. Quantum yield measurements have indicated that about 40% of the initially exited reactant molecules form the final photoproduct. A 62 fs rise component in the transient absorption (TA) signal was observed at all probe wavelengths in the visible regio…

ChemistryAnalytical chemistryQuantum yieldPhotochemistrymedicine.disease_causeDissociation (chemistry)Surfaces Coatings and FilmsExcited stateUltrafast laser spectroscopyMaterials ChemistrymedicineMoleculePhysical and Theoretical ChemistrySpectroscopyExcitationUltravioletThe Journal of Physical Chemistry B
researchProduct

Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles

2020

International audience; The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled…

Materials scienceTerahertz radiationNanophotonicsFOS: Physical sciencesGeneral Physics and AstronomyPhysics::Optics02 engineering and technology010402 general chemistrySettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesOptical switchhalide perovskites nanoparticles[SPI]Engineering Sciences [physics]Fano resonance; halide perovskites nanoparticles; ultrafast photophysics; nanophotonics; Mie resonancesPhysics::Atomic and Molecular Clusters[CHIM]Chemical SciencesGeneral Materials ScienceThin filmPhysics::Chemical PhysicsPerovskite (structure)[PHYS]Physics [physics]Condensed Matter - Materials Sciencebusiness.industryMie resonancesGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Fano resonanceMetamaterialSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnology0104 chemical sciencesOptoelectronicsFano resonancenanophotonics0210 nano-technologybusinessultrafast photophysicsUltrashort pulseOptics (physics.optics)Physics - Optics
researchProduct

Electron Transfer from Organic Aminophenyl Acid Sensitizers to Titanium Dioxide Nanoparticle Films

2009

Electron transfer from three conjugated amino-phenyl acid dyes to titanium and aluminum oxide nanocrystalline films was studied by using transient absorption spectroscopy with sub 20 fs time-resolution over the visible spectral region. All the dyes attached to TiO2 showed long-lived ground state bleach signals indicative of formation of new species. Global analysis of the transient kinetics of the dyes on TiO2 revealed stimulated emission decays of about 40 fs and less than 300 fs assigned to electron injection. The same dyes on Al2O3 substrates displayed long stimulated emission decays (ns) suggesting that electron transfer is blocked in this high band gap semiconductor. For two of the dye…

Band gapConjugated systemPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundElectron transferGeneral EnergychemistryTitanium dioxideUltrafast laser spectroscopyDensity functional theoryStimulated emissionPhysical and Theoretical ChemistrySpectroscopyThe Journal of Physical Chemistry C
researchProduct