0000000000423076
AUTHOR
I. G. Lang
Magnetic-field-enhanced outgoing excitonic resonance in multi-phonon Raman scattering from polar semiconductors
A combined scattering mechanism involving the states of free electron-hole pairs (exciton continuum) and discrete excitons as intermediate states in the multi-phonon Raman scattering leads to (1) a strong increase of the scattering efficiency in the presence of a high magnetic field and to (2) an outgoing excitonic resonance: the two features are not compatible when only free pairs (leading to a strong increase of the scattering efficiency under the applied magnetic field) or discrete excitons (resulting in the outgoing resonance at the excitonic gap) are taken into account.
Triple magnetopolarons in quantum wells
We derive the equations for eigenstates and eigenenergies of a triple magnetopolaron in quantum-well structures. An iteration procedure for obtaining the wave function and energy including the contributions of diagrams with crossing phonon lines is given. We show that under conditions of exact resonance the middle energy branch of the triply split magnetopolaron state consists of only two out of three bare states. We suggest the experimental verification of this prediction.
Spatial correlation of laser-generated electrons and holes in quantum wells
The spatial correlation of hot electrons and holes generated by light in a semiconductor quantum well (QW) is studied. For hot electron-hole pairs in a polar material, this correlation is determined by the interaction with LO-phonons. We analyze the distribution F N (r, K) of electrons and holes which are created in a given light absorption process, with respect to their relative separation r and total quasimomentum ħK, after the emission of a number N of LO-phonons. The relationship between the spatial distribution of electrons and holes in these intermediate states and the cross-section of multi-phonon resonant Raman scattering (MPRRS) is established. Spatial correlation effects are stron…