0000000000423146

AUTHOR

Morgane Vacher

0000-0001-9418-6579

showing 2 related works from this author

OpenMolcas: From Source Code to Insight

2019

In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multico…

Wave functionSource codeField (physics)Computer sciencemedia_common.quotation_subjectInterfacesSemiclassical physics010402 general chemistry0601 Biochemistry and Cell Biology01 natural sciencesComputational scienceNOChemical calculationsMathematical methodschemical calculations ; electron correlation ; interfaces ; mathematical methods ; wave function0103 physical sciences0307 Theoretical and Computational ChemistryPhysical and Theoretical ChemistryWave functionWave function Interfaces Chemical calculations Mathematical methods Electron correlationComputingMilieux_MISCELLANEOUSmedia_commonChemical Physics010304 chemical physicsBasis (linear algebra)business.industryDensity matrix renormalization groupElectron correlationSoftware development0803 Computer Software0104 chemical sciencesComputer Science ApplicationsVisualization[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrybusiness
researchProduct

Chemi- and Bioluminescence of Cyclic Peroxides

2018

Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplif…

Luminescence010402 general chemistry01 natural sciencesCatalysislaw.inventionFragmentation (mass spectrometry)BIOLUMINESCÊNCIAComputational chemistrylawArtificial systemsBioluminescenceSinglet stateComputingMilieux_MISCELLANEOUSChemiluminescenceMolecular Structure010405 organic chemistryChemistryGeneral ChemistryPeroxides0104 chemical sciences3. Good health[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryExcited stateYield (chemistry)Thermal dissociationLuminescent Measurements
researchProduct